# Lifting the *j*-Invariant and Computations with Witt Vectors

#### Luís Finotti

University of Tennessee

UCSB - Jan 11, 2013



### *p*-Adic Integers

Let:

- p be a prime,  $r \in \mathbb{Z}_{>0}$ , and  $q \stackrel{\text{def}}{=} p^r$
- $\mathbb{Q}_q$  be the unramified extension of  $\mathbb{Q}_p$  of degree r;
- $\mathbb{Z}_q$  be the ring of integers of  $\mathbb{Q}_q$ .

Then  $\mathbb{Z}_q$  is a *p*-adic ring (or strict *p*-ring) with residue field  $\mathbb{F}_q$ .

#### Question

Given a perfect field  $\Bbbk$  of characteristic p, is there a p-adic ring  $R_{\Bbbk}$  with residue field  $\Bbbk$ ?

Yes! Witt gave an explicit construction of such ring!

### Constructing $W(\mathbb{F}_q)$

Let  $\mu_m$  denote the *m*-th roots of unity. We have:

- $\mu_{q-1} \subseteq \mathbb{Z}_q$  (Hensel's Lemma).
- $\{0\} \cup \mu_{q-1}$  is a complete set of representatives of  $\mathbb{F}_q$  in  $\mathbb{Z}_q$ .
- $a \in \mathbb{Z}_q$  has a unique representation of the form  $a = \sum_{i=0}^{\infty} a_i p^i$  with  $a_i \in \{0\} \cup \mu_{q-1}$ .

We can then identify a with  $(\bar{a}_0,\bar{a}_1,\bar{a}_2,\ldots).$  But how do we add and multiply these elements now? We have

 $(\bar{a}_0, \bar{a}_1, \bar{a}_2, \ldots) + (\bar{b}_0, \bar{b}_1, \bar{b}_2, \ldots) = (S_0(\bar{a}_0, \bar{b}_0), S_1(\bar{a}_0, \bar{a}_1, \bar{b}_0, \bar{b}_1), \ldots),$ 

where  $S_n \in \mathbb{Z}[X_0, X_1^{1/p}, \dots, X_n^{1/p^n}, Y_0, Y_1^{1/p}, \dots, Y_n^{1/p^n}]$ . The product is similar.

۲U

# Constructing $W(\mathbb{F}_q)$ (cont.)

Better idea: to identify  $a = \sum a_i p^i$  with  $(\bar{a}_0, \bar{a}_1^p, \bar{a}_2^{p^2}, \ldots)$ . Then:

Background

Witt Vectors

 $(\bar{a}_0, \bar{a}_1, \bar{a}_2, \ldots) + (\bar{b}_0, \bar{b}_1, \bar{b}_2, \ldots) = (S_0(\bar{a}_0, \bar{b}_0), S_1(\bar{a}_0, \bar{a}_1, \bar{b}_0, \bar{b}_1), \ldots),$  $(\bar{a}_0, \bar{a}_1, \bar{a}_2, \ldots) \cdot (\bar{b}_0, \bar{b}_1, \bar{b}_2, \ldots) = (P_0(\bar{a}_0, \bar{b}_0), P_1(\bar{a}_0, \bar{a}_1, \bar{b}_0, \bar{b}_1), \ldots),$ 

where  $S_n, P_n \in \mathbb{Z}[X_0, X_1, \dots, X_n, Y_0, Y_1, \dots, Y_n]$ . ( $S_n$  and  $P_n$  depend only on p.)

Hence, we have an isomorphism of ring  $\mathbb{F}_q^{\infty}$  with sum and product defined by polynomial equations above and  $\mathbb{Z}_q$ .

Given a perfect field  $\Bbbk$  of characteristic p, this construction makes  $\Bbbk^{\infty}$  a p-adic ring with residue field  $\Bbbk$  (with p = (0, 1, 0, ...)), the ring of Witt vectors over  $\Bbbk$ , denoted by  $W(\Bbbk)$ .

As we can see from the power series identification, we have that  $W_n(\Bbbk) \stackrel{\text{def}}{=} W(\Bbbk)/(p^n)$  is the truncation of vectors to the *n*-th coordinate, and hence we call this quotient ring the ring of Witt vectors of length *n*.

The *p*-th power Frobenius  $\sigma$  of  $\Bbbk$  lifts to  $W(\Bbbk)$  by  $\sigma(a_0, a_1, \ldots) = (\sigma(a_0), \sigma(a_1), \ldots, ) = (a_0^p, a_1^p, \ldots).$ 

# Computing in $W(\Bbbk)$

To compute with  $W_n(k)$ , need  $S_i, P_i$  for  $i \in \{0, \ldots, (n-1)\}$ .

Problem: These polynomials are huge! E.g., for p = 31,  $S_2$  has 152,994 monomials!

Thus, if  $\mathbb{k} = \mathbb{F}_q$ , one should make computations in  $\mathbb{Z}_q$ .

But, depending on  $\mathbb{k}$ , we cannot see  $W(\mathbb{k})$  as a known local ring, and so we might need to use  $S_n$  and  $P_n$  for sums and products.

The Polynomials  $S_n$  and  $P_n$ .

 $S_n$  and  $P_n$  are given recursively:

$$S_n = (X_n + Y_n) + \frac{1}{p}(X_{n-1}^p + Y_{n-1}^p - S_{n-1}^p) + \dots + \frac{1}{p^n}(X_0^{p^n} + Y_0^{p^n} - S_0^{p^n}),$$

Background Witt Vectors

and

$$P_{n} = (X_{0}^{p^{n}}Y_{n} + X_{1}^{p^{n-1}}Y_{n-1}^{p} + \dots + X_{n}Y_{0}^{p^{n}}) + \frac{1}{p}(X_{0}^{p^{n}}Y_{n-1}^{p} + \dots + X_{n-1}^{p}Y_{0}^{p^{n}}) \vdots + \frac{1}{p^{n}}(X_{0}^{p^{n}}Y_{0}^{p^{n}}) - \frac{1}{p^{n}}P_{0}^{p^{n}} - \dots - \frac{1}{p}P_{n-1}^{p} + p(\dots).$$

We cannot plug in coordinates on these formulas! Have to expand and simplify!

L. Finotti (U of TN)

Lift. j-Inv. and Comp. w. Witt vec

UCSB - 01/11/13 7 / 47

Br

### Teichmüller Lift

Remember that we have a lift of the Frobenius from  $\Bbbk$  to  $W(\Bbbk)$ . We also the *Teichmüller lift*  $\tau : a \mapsto (a, 0, 0, ...)$ , which yields the following diagram:



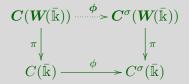
#### Question

Can we also lift the Frobenius for curves over  $\Bbbk$ ?



#### Curves

More precisely, given a curve  $C/\Bbbk$  and if  $\phi: C \to C^{\sigma}$  is the Frobenius map, is there a lifting C/W for which we can lift the Frobenius:



**Answer:** Yes, for *ordinary* elliptic curves and Abelian varieties (Deuring and Serre-Tate), but no for higher genus curves (Raynaud). In the case of elliptic curves we also have a *Teichmüller lift*.

Also, Mochizuki showed that one can lift the Frobenius for some curves of genus  $g \ge 2$  if we allow singularities (at (p-1)(g-1) points).

13r

### Ordinary Elliptic Curve

An elliptic curve (given by  $y^2 = x^3 + ax + b$ ) over a field  $\Bbbk$  of characteristic p > 3 is ordinary if  $E[p] \cong \mathbb{Z}/p$ . (Or, equivalently, if the coefficient of  $x^{p-1}$  in  $(x^3 + ax + b)^{(p-1)/2}$  is non-zero.) Otherwise, the elliptic curve is said to be supersingular.

**Note:** Only finitely many elliptic curves (up to isomorphism) are supersingular.

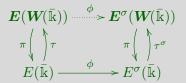
We can lift the Frobenius for ordinary elliptic curves, i.e., if k is a perfect field with char(k) = p and  $E/k: y_0^2 = x_0^3 + a_0x_0 + b_0$ , then there exists  $a = (a_0, a_1, \ldots), b = (b_0, b_1, \ldots) \in W$  such that  $E/W: y^2 = x^3 + ax + b$  has a lifting of the Frobenius:

$$\begin{array}{c|c} \boldsymbol{E}(\boldsymbol{W}(\bar{\Bbbk})) & \stackrel{\phi}{\longrightarrow} \boldsymbol{E}^{\sigma}(\boldsymbol{W}(\bar{\Bbbk})) \\ \pi & & & & \\ \pi & & & & \\ E(\bar{\Bbbk}) & \stackrel{\phi}{\longrightarrow} \boldsymbol{E}^{\sigma}(\bar{\Bbbk}) \end{array}$$

# Elliptic Teichmüller Lift

Moreover, the curve E above is unique up to isomorphism and it is called the *canonical lifting of* E. Canonical liftings are often used in point counting (e.g., Satoh's algorithm) and have applications in coding theory and computing torsion points of higher genus curves. As with Witt vectors, we also have a section of the reduction modulo p,

the so called *elliptic Teichmüller lift*  $\tau$ :



Also,  $\tau$  is a group homomorphism, and one can show that:

 $\tau(x_0, y_0) = ((F_0, F_1, F_2, \ldots), (y_0, y_0 G_1, y_0 G_2, \ldots)),$ 

where  $F_i, G_i \in \mathbb{k}[x_0]$ .

L. Finotti (U of TN)

13r

#### Error Correcting Codes

Voloch and Walker used canonical liftings and the elliptic Teichmüller lift to create error-correcting codes. The bounds for the parameters (which measure "how good" the resulting codes are likely to be) depend on the degrees of  $F_i$ 's and  $G_i$ 's, with lower degrees giving better bounds. They showed that  $F_1$  and  $G_1$  had minimal degrees, making the canonical lifting the natural choice.

On the other hand,  $F_i$  and  $G_i$  for  $i \ge 2$  are *not* minimal.

One should note that, one can construct codes with more general liftings of curves in a very similar way.

#### Error Correcting Codes (cont.)

With elliptic curves, we have:

#### Theorem

Let  $E/\Bbbk$  as above and  $\tilde{E}/W_3(\Bbbk)$  be a lifting for which we have a lifting of points  $\nu : E(\bar{\Bbbk}) \to \tilde{E}/W_3(\bar{\Bbbk})$  having "minimal degrees". Then  $\tilde{E}$  is the canonical lifting of E (modulo  $p^3$ ) and we have a lifting of the Frobenius on the affine part of E so that the following diagram commutes:

$$\tilde{\boldsymbol{E}}(\boldsymbol{W_3}(\bar{\boldsymbol{k}})) \xrightarrow{\tilde{\boldsymbol{\phi}}} \tilde{\boldsymbol{E}}^{\sigma}(\boldsymbol{W_3}(\bar{\boldsymbol{k}})) \xrightarrow{\pi \langle \boldsymbol{\gamma} \rangle} E^{\sigma}(\bar{\boldsymbol{k}}) \xrightarrow{\pi \langle \boldsymbol{\gamma} \rangle} E^{\sigma}(\bar{\boldsymbol{k}}) \xrightarrow{\phi} E^{\sigma}(\bar{\boldsymbol{k}})$$

Moreover, any supersingular elliptic curve will yield larger degrees.



### Minimal Degree Liftings

Therefore, the notions of *ordinary elliptic curve* and its *canonical lifting* (at least modulo  $p^3$ ) can be defined strictly from the point of view of minimal degree liftings:

- *E* is ordinary if there is a lifting satisfying the lower bound on the degrees of the lifting map;
- *E* is the canonical lifting of *E* if there is a lifting map satisfying the lower bound.

On the other hand, in this way, these notions can be generalized to higher genus curves, and in a very similar way, one can obtain very similar results for *hyperelliptic* curves!



### Mochizuki Liftings

For genus 2 curves (and so hyperelliptic) in characteristic 3, one can have a Mochizuki lifting of the Frobenius if one removes (some) 2 points from the curve. These two points are invariant by the hyperelliptic involution and thus can be put at "infinity".

We then have:

#### Theorem (F.-Mochizuki)

The notions of "ordinary" and "canonical lifting" (modulo  $p^2$ ) from the theory of minimal degree liftings coincide with the ones coming from Mochizuki's theory.

Thus, we were able to give a concrete example of a family of Mochizuki liftings.

Let, as before,  $E/\Bbbk$  be an ordinary elliptic curve and  $\pmb{E}/\pmb{W}(\Bbbk)$  be its canonical lifting.

Thus if  $\mathbb{k}^{ord}$  denotes the set of ordinary *j*-invariants in  $\mathbb{k}$ , we have functions  $J_i : \mathbb{k}^{ord} \to \mathbb{k}$  such that  $(j_0, J_1(j_0), J_2(j_0), \ldots)$  is the *j*-invariant of the canonical lifting of the curve with *j*-invariant  $j_0 \in \mathbb{k}^{ord}$ .

#### Mazur's Question (to John Tate)

What kind of functions are these  $J_n$ ? Can one say anything about them?



### First Computations

#### **Examples:**

$$p = 5 \qquad J_1 = 3j_0^3 + j_0^4;$$

$$J_2 = 3j_0^5 + 2j_0^{10} + 2j_0^{13} + 4j_0^{14} + 4j_0^{15} + 4j_0^{16} + j_0^{17} + 4j_0^{18} + j_0^{19} + j_0^{20} + 3j_0^{23} + j_0^{24}.$$
Question: Can these functions all be polynomials?
$$p = 7 \qquad J_1 = 3j_0^5 + 5j_0^6;$$

$$J_2 = (3j_0^{21} + 6j_0^{28} + 3j_0^{33} + 5j_0^{34} + 4j_0^{35} + 2j_0^{36} + 3j_0^{37} + 6j_0^{38} + 3j_0^{39} + 5j_0^{40} + 5j_0^{41} + 5j_0^{42} + 2j_0^{43} + 3j_0^{44} + 6j_0^{45} + 3j_0^{46} + 5j_0^{47} + 5j_0^{48} + 3j_0^{49} + 3j_0^{54} + 5j_0^{55})/(1+j_0^7).$$

**Note:** If  $j_0 = -1$ , then E is supersingular, i.e., no canonical lifting.

1JL

#### Functions $J_n$

### **Pseudo-Canonical Liftings**

(Superficial) Answer to Mazur's Question

For any p, we have that  $J_n \in \mathbb{F}_p(X)$ .

#### Tate's Question

Is there a supersingular value of  $j_0$  (for some fixed characteristic p) for which all functions  $J_n$  are regular at  $j_0$ . (E.g.,  $j_0 = 0$  for p = 5 for  $J_1$  and  $J_2$ ?)

This lead us to define:

#### Definition

The elliptic curve over  $W(\mathbb{k})$  given by  $j \stackrel{\text{def}}{=} (j_0, J_1(j_0), J_2(j_0), \ldots)$  for such a supersingular  $j_0$  is a pseudo-canonical lifting of the elliptic curve given by  $j_0$ . Tate's question: do they exist at all?

### Answer to Tate's Question

#### Theorem

- Let  $j_0 \notin \mathbb{k}^{ord}$  and  $p \geq 5$ . Then:
  - **1**  $J_1$  is regular at  $j_0$  if, and only if,  $j_0$  is either 0 or 1728.
  - **2**  $J_2$  is regular at  $j_0$  if, and only if,  $j_0$  is 0.
  - **3** For  $n \ge 3$ , we have that  $J_n$  is never regular at  $j_0$ .

For p = 2, 3 (in which case only  $j_0 = 0$  is supersingular), we have that  $J_i$  is regular at 0 if, and only if,  $i \le 11$  for p = 2 or  $i \le 5$  for p = 3.

So, (unrestricted) pseudo-canonical liftings don't exits.

#### Functions $J_n$

#### Answer to Mazur's Question

We need some notation: let

$$\operatorname{ss}_p(X) \stackrel{\text{def}}{=} \prod_{j \text{ supers.}} (X - j)$$

(the supersingular polynomial) and

$$S_p(X) \stackrel{\text{def}}{=} \prod_{\substack{j \text{ supers.} \\ j \neq 0,1728}} (X - j).$$

One then has that  $\mathrm{ss}_p(X), S_p(X) \in \mathbb{F}_p[X]$ , and  $S_p(0), S_p(1728) \neq 0.$  Also, let

$$\iota = \begin{cases} 8, & \text{if } p = 2; \\ 3, & \text{if } p = 3; \\ 2, & \text{if } p = 31; \\ 1, & \text{otherwise.} \end{cases}$$

#### Answer to Mazur's Question

Then, we have:

#### Theorem

Let  $J_i = F_i/G_i$ , with  $F_i, G_i \in \mathbb{F}_p[X]$ ,  $(F_i, G_i) = 1$ , and  $G_i$  monic. Also, let  $r_i = (i-1)p^{i-1}$ ,  $s_i = ((i-3)p^i + ip^{i-1})/3$  and  $s'_i = \max\{0, s_i\}$ . Then, for all  $i \in \mathbb{Z}_{>0}$  we have: 1 deg  $F_i - \deg G_i = p^i - \iota$ ; 2 if  $p \ge 5$ , then  $G_i = S_p(X)^{ip^{i-1} + (i-1)p^{i-2}} \cdot H_i$ , where  $H_i \mid X^{s'_i} \cdot (X - 1728)^{r_i}$ ; 3 if p = 2, 3, then  $G_i = X^{t_i}$ , where  $t_i \le p^i$ .

Also, there is a formula for  $J_i(X)$  (which can be simplified if  $p \ge 3$ ) obtained from the *classical modular polynomial*.

#### Functions $J_n$

#### Modular Functions

Assume from now  $p \ge 5$ . Another perspective: if  $E/\Bbbk$ , ordinary, is given by  $y_0^2 = x_0^3 + a_0 x_0 + b_0$ , and E/W is its canonical lifting and (after some "choice") is given by  $y^2 = x^3 + ax + b$ , then

$$a = (A_0, A_1, A_2, \ldots),$$
  
 $b = (B_0, B_1, B_2, \ldots),$ 

where  $A_i, B_i \in \mathbb{k}(a_0, b_0)$ . In fact, if  $\mathcal{H}$  is the *Hasse invariant* of E (i.e., the coefficient of  $x_0^{p-1}$  is  $(x_0^3 + a_0x_0 + b_0)^{(p-1)/2}$ ), then  $A_i, B_i$  possibly have poles only at the zeros of  $\mathcal{H}$  (or  $\Delta = 4a_0^3 + 27b_0^2$ ).

#### Question

What are the weights of the  $A_i$ 's and  $B_i$ 's? What are the order of the poles?

### Modular Functions (cont.)

#### Conjecture

- **1**  $A_i$  has weight  $4p^i$ .
- **2**  $B_i$  has weight  $6p^i$ .
- 3  $A_i$  and  $B_i$  have poles of order at most (i-1)p+1 at the zeros of  $\mathcal{H}$ . (At least for  $i \leq 2$ . Not enough data yet.)
- **4**  $A_i$  and  $B_i$  have no zeros at zeros of  $\Delta$ .

So, if true, the isomorphism  $(a_0, b_0) \leftrightarrow (\lambda_0^4 a_0, \lambda_0^6 b_0)$  corresponds, via canonical liftings, to the isomorphism  $(a, b) \leftrightarrow (\lambda^4 a, \lambda^6 b)$ , where  $\lambda = \tau(\lambda_0) = (\lambda_0, 0, 0, \ldots)$ .

### Modular Polynomial

The classical modular polynomial is a polynomial  $\Phi_p(X, Y) \in \mathbb{Z}[X, Y]$ such that two elliptic curves with *j*-invariants  $j_1$  and  $j_2$  have a (roughly speaking) "*p*-to-one morphism" between them if and only if  $\Phi_p(j_1, j_2) = 0$ .

Then, the lifting of the Frobenius gives us:

 $\Phi_p((j_0, J_1(j_0), J_2(j_0), \ldots), (j_0^p, J_1(j_0)^p, J_2(j_0)^p, \ldots)) = 0.$ 

So, to compute  $J_i(X)$ , we use

 $\Phi_p((X, J_1(X), J_2(X), \ldots), (X^p, J_1(X)^p, J_2(X)^p, \ldots)) = 0.$ 

We just expand it as Witt vectors, and we can solve in the *i*-th coordinate for  $J_{i-1}(X)$ . (Difficult computation!)

IJГ

#### Greenberg Transform

The Greenberg transform is a crucial step in the proof of the main theorems and in concrete computations.

Let  $f \in W(\Bbbk)[x, y]$ . By letting  $x_0 = (x_0, x_1, \ldots)$  and  $y_0 = (y_0, y_1, \ldots)$ , we have  $f(x_0, y_0) = (f_0, f_1, f_2, \ldots) \in W(\Bbbk[x_0, x_1, \ldots, y_0, y_1, \ldots])$ . We call  $\mathscr{G}(f) \stackrel{\text{def}}{=} (f_0, f_1, \ldots)$  the Greenberg transform of f.

#### Examples

$$\mathscr{G}(\boldsymbol{x} + \boldsymbol{y}) = (\bar{S}_0, \bar{S}_1, \bar{S}_2, \ldots)$$
  
 $\mathscr{G}(\boldsymbol{x} \cdot \boldsymbol{y}) = (\bar{P}_0, \bar{P}_1, \bar{P}_2, \ldots).$ 

### Explicit Example of a Greenberg Transform

Let  $E/W(\mathbb{F}_5): y^2 = x^3 + 1$ . Then, the first three equations of the Greenberg Transform are:

 $\begin{array}{l} \mathbf{1} \hspace{0.5cm} y_{0}^{2} = x_{0}^{3} + 1; \\ \mathbf{2} \hspace{0.5cm} 2y_{0}^{5}y_{1} = 4x_{0}^{12} + 3x_{0}^{10}x_{1} + 3x_{0}^{9} + 3x_{0}^{6} + 4x_{0}^{3}; \\ \mathbf{3} \hspace{0.5cm} 4y_{0}^{25}y_{1}^{5} + 2y_{0}^{25}y_{2} + y_{1}^{10} = 4x_{0}^{72} + 3x_{0}^{69} + 3x_{0}^{66} + 4x_{0}^{63} + 2x_{0}^{58}x_{1} + 3x_{0}^{57} + \\ \hspace{0.5cm} 3x_{0}^{56}x_{1}^{2} + x_{0}^{55}x_{1} + x_{0}^{54}x_{1}^{3} + 2x_{0}^{54} + 3x_{0}^{53}x_{1}^{2} + x_{0}^{52}x_{1}^{4} + 4x_{0}^{52}x_{1} + 4x_{0}^{51}x_{1}^{3} + \\ \hspace{0.5cm} 2x_{0}^{50}x_{1}^{5} + 4x_{0}^{50}x_{1}^{2} + 3x_{0}^{50}x_{2} + 2x_{0}^{49}x_{1}^{4} + 3x_{0}^{49}x_{1} + 3x_{0}^{48}x_{1}^{3} + x_{0}^{48} + 2x_{0}^{46}x_{1}^{4} + \\ \hspace{0.5cm} 4x_{0}^{44}x_{1}^{2} + x_{0}^{43}x_{1}^{4} + 4x_{0}^{43}x_{1} + 3x_{0}^{42}x_{1}^{3} + 4x_{0}^{41}x_{1}^{2} + 4x_{0}^{40}x_{1} + 4x_{0}^{39}x_{1}^{3} + 4x_{0}^{39} + \\ \hspace{0.5cm} 4x_{0}^{37}x_{1} + x_{0}^{36}x_{1}^{3} + 4x_{0}^{36} + 4x_{0}^{35}x_{1}^{2} + 3x_{0}^{32}x_{1}^{2} + 3x_{0}^{31}x_{1} + 3x_{0}^{29}x_{1}^{2} + 4x_{0}^{28}x_{1} + \\ \hspace{0.5cm} x_{0}^{27} + 3x_{0}^{25}x_{1}^{10} + x_{0}^{25}x_{1} + 2x_{0}^{22}x_{1} + 2x_{0}^{21} + 3x_{0}^{18} + 4x_{0}^{12} + 3x_{0}^{9} + 3x_{0}^{6} + 4x_{0}^{3} \end{array}$ 



One way to compute  $J_i(X)$  is to compute the Greenberg transform of  $\Phi_p(\boldsymbol{x}, \boldsymbol{y})$ , evaluate at  $\boldsymbol{x} = (X, J_1(X), J_2(X), \ldots)$ ,  $\boldsymbol{y} = (X^p, J_1(X)^p, J_2(X)^p, \ldots)$ , set coordinates equal to zero and solve.

We deduced a (very long and highly recursive) formula for the Greenberg transform. From that one can get an immediate formula for the  $J_i$ 's.

But, the necessary evaluation makes the computation simpler if one removes terms that vanish. In fact the simplification also helps in proving the main theorems.

The proof of the main theorems was done by:

- **1** Use the formula for the Greenberg transform applied to  $\Phi_p(\boldsymbol{x}, \boldsymbol{y})$ .
- 2 Simplify it by removing unnecessary terms.
- **3** Use results of Kaneko-Zagier on  $J_1$ .
- 4 Some results followed, others were rephrased as questions on coefficients of  $\Phi_p$ .
- **5** Answered the questions above. (Thanks to A. Sutherland.)

#### Computing with Witt Vectors

Note that we cannot compute sums and products by plugging in the entries in the recursive formulas of  $S_n$  and  $P_n$ , as those have p in the denominator. Thus, in general, one has to expand those formulas.

Problem: These polynomials are huge! E.g.,  $S_2$  has 152,994 monomials for p = 31.

I was not able to compute  $S_4$  for p = 11 with 24 gigabytes of memory. So, in general one cannot expect to make computations with Witt vectors of length 5 (or more) over fields of characteristic 11.

In some particular cases, such as over finite fields, there are efficient methods (via canonical isomorphisms) which avoids that. But often times one has to resort to the defining polynomials. (E.g., over polynomial rings, as when we compute the Greenberg transform.)

### Computing with Witt Vectors (cont.)

Ideas to improve computations:

- Avoid expanding unnecessary powers: to compute (α + β)<sup>n</sup> is better to first add α and β and then take an n-th power than to expand and store the polynomial (X + Y)<sup>n</sup> and then evaluate it at X = α and Y = β.
- Perform (most) computations in characteristic *p*.
- Replace  $S_n$  and  $P_n$  with *simpler* polynomials that work for both!
- Perhaps evaluate the polynomials above "on the fly", without having to precompute and store them.



# Computing with Witt Vectors (cont.)

To clarify the last item: instead of computing and storing the polynomial

$$\eta_1(X,Y) = \frac{X^p + Y^p - (X+Y)^p}{p} = -\sum_{i=1}^{p-1} \frac{1}{p} \binom{p}{i} X^i Y^{p-i},$$

one can compute  $\eta_1(a, b)$  with the routine

```
res=0
for i in {1...(p-1)} do
  res = res - (binom(p,i)/p) * a^(p-i) * b^i
end for
return res
```

### Auxiliary Polynomials

#### Definition

Define  $\eta_0(X_1, \ldots, X_r) = X_1 + \cdots + X_r$  and, recursively, for  $k \ge 1$ ,

$$\eta_0(X_1, \dots, X_r)^{p^k} + p\eta_1(X_1, \dots, X_r)^{p^{k-1}} + \dots + p^k \eta_k(X_1, \dots, X_r)$$
$$= X_1^{p^k} + \dots + X_r^{p^k}$$

#### Proposition

We have that  $\eta_k(X_0, Y_0) = S_k(X_0, 0, \dots, 0, Y_0, 0, \dots, 0)$  and  $\eta_k(X_1, \dots, X_r)$  has integral coefficients.

L. Finotti (U of TN)

Lift. j-Inv. and Comp. w. Witt vec

UCSB - 01/11/13 32 / 47

ы

### Auxiliary Polynomials

The functions  $\eta_i$  "replace divisions by p" in the recursive formulas for  $S_n$ ,  $P_n$  and the Greenberg transform. (Only two variables are needed!)

(Note that  $\eta_i$  is *much* simpler than  $S_i$ .)

The formula for the Greenberg transform heavily rely on these functions!

Moreover, their reduction modulo  $p\ {\rm can}\ {\rm be\ computed\ mostly\ on}\ {\rm characteristic\ }p,$  they avoid expanding powers, and can be computed on the fly.

# Witt Sum with $\eta_i$ 's (cont.)

We have that  $\bar{S}_n = \sum_{t \in S_n} t$ , where:

$$\begin{split} & \mathfrak{S}_0 = (x_0, y_0) \\ & \mathfrak{S}_1 = (x_1, y_1, \eta_1(\mathfrak{S}_0)) \\ & \mathfrak{S}_2 = (x_2, y_2, \eta_2(\mathfrak{S}_0), \eta_1(\mathfrak{S}_1)) \\ & \mathfrak{S}_3 = (x_3, y_3, \eta_3(\mathfrak{S}_0), \eta_2(\mathfrak{S}_1), \eta_1(\mathfrak{S}_2)) \end{split}$$

# Witt Products with $\eta_i$ 's

Similarly, we have that  $\bar{P}_n = \sum_{t \in \mathcal{P}_n} t$  , where:

$$\begin{aligned} \mathcal{P}_{0} &= (x_{0}y_{0}) \\ \mathcal{P}_{1} &= (x_{1}y_{0}^{p}, x_{0}^{p}y_{1}) \\ \mathcal{P}_{2} &= (x_{2}y_{0}^{p^{2}}, x_{1}^{p}y_{1}^{p}, x_{0}^{p^{2}}y_{2}, \eta_{1}(\mathcal{P}_{1})) \\ \mathcal{P}_{3} &= (x_{3}y_{0}^{p^{3}}, x_{2}^{p}y_{1}^{p^{2}}, x_{1}^{p^{2}}y_{2}^{p}, x_{0}^{p^{3}}y_{3}, \eta_{2}(\mathcal{P}_{1}), \eta_{1}(\mathcal{P}_{2})) \\ & . \end{aligned}$$



### Different Methods

There are two ways to compute  $\eta_k(a_1, \ldots, a_n)$ , for  $a_i \in \mathbb{k}$  (in characteristic p).

- We compute and store the polynomials  $\bar{\eta}_k(X,Y) \in \mathbb{F}_p[X,Y]$  (two variables only) and use a recursive algorithm to compute  $\eta_k(a_1,\ldots,a_n)$ .
- We compute and store some expansion of some binomials coefficients as Witt vectors (much smaller to store and quicker to compute) and use a highly recursive algorithm to compute η<sub>k</sub>(a<sub>1</sub>,..., a<sub>n</sub>).

In either case we have great gains when performing computation with Witt vectors.

#### Example

For p = 11 we've computed  $S_3$  using the usual recursive formula and using the formula for the GT. The former took 130.56 hours, while the latter took 7.20 hours. (The computation of  $\bar{\eta}_i(X,Y)$  for i = 1, 2, 3 takes only 0.19 seconds in this case.)

#### Comparing the Methods

The 24 gigabytes of memory available were not enough to compute  $S_4$  with either method. On the other hand, we do not need  $S_4$  to add Witt vectors with our new methods.

#### Example

We can add two vectors in  $W_6(\mathbb{F}_{11^{10}})$  in about 1 second, after we spend approximately 3.61 hours to compute the  $\bar{\eta}_i(X, Y)$  for  $i \in \{1, 2, 3, 4, 5\}$ . Using the other method, we need only 5.750 seconds to compute the Witt vectors of the binomial coefficients, but then it takes us about 26 seconds on average to add two Witt vectors in  $W_6(\mathbb{F}_{11^{10}})$ .



#### **Evaluating a Polynomial**

The table below give times (in seconds) and memory usages (in MB) to evaluate a randomly chosen  $f \in W_{n+1}(\mathbb{k})[x, y]$ , where  $\deg_x f, \deg_y f \leq d$ , at a randomly chosen  $(x_0, y_0)$ .

|   |                        | Sum and Prod. |    |                   | GT form. |       |         |       |
|---|------------------------|---------------|----|-------------------|----------|-------|---------|-------|
|   | $\Bbbk$                | n             | d  | $ar{\eta}_i$ time | time     | mem.  | time    | mem.  |
|   | $\mathbb{F}_{3^{10}}$  | 9             | 20 | 108.78            | 433.31   | 12.22 | 130.28  | 16.40 |
| ſ | $\mathbb{F}_{7^{10}}$  | 6             | 20 | 3554.78           | 2410.49  | 28.00 | 600.23  | 28.62 |
|   | $\mathbb{F}_{11^{10}}$ | 5             | 20 | 5794.89           | 3564.62  | 37.44 | 839.37  | 30.88 |
|   | $\mathbb{F}_{13^{10}}$ | 5             | 15 | 29854.75          | 4608.84  | 70.63 | 1045.08 | 49.00 |
|   | $\mathbb{F}_{19^{10}}$ | 4             | 15 | 2760.36           | 2301.17  | 32.44 | 983.08  | 26.72 |

The sums and products were already the optimized ones!

### Performance Differences for the GT

The following table shows the times and memory needed to compute the  $\mathsf{GT}$  of

 $\boldsymbol{x}^{3} + (a_{0}, a_{1}, a_{2})\boldsymbol{x}^{2} + (b_{0}, b_{1}, b_{2})\boldsymbol{x} + (c_{0}, c_{1}, c_{2}),$ 

with  $a_i$ 's,  $b_i$ 's and  $c_i$ 's unknowns. ("orig." means evaluate the sums and products, "new" means use the GT formula.) In Sage:

| char. | $t_{\rm orig.}~({\rm sec})$ | $t_{\sf new}$ (sec) | $m_{\rm orig.}$ (MB) | $m_{\sf new}$ (MB) |
|-------|-----------------------------|---------------------|----------------------|--------------------|
| 5     | 0.50                        | 0.29                | 5.82                 | 4.82               |
| 7     | 27.48                       | 1.30                | 65.82                | 33.82              |
| 11    | 10265.87                    | 196.01              | 3566.32              | 1721.82            |
| 13    |                             | 1368.54             |                      | 8416.57            |

Note how demanding the computation of the GT is! E.g., the third coordinate for p = 11 is a polynomial in 12 variables with 31, 216, 093 terms. For p = 13, it has 153, 065, 983 terms!

11r

### Computing Times for $J_3$

The following table list times and memory usages to compute  $J_3$  in the three different ways:

- Method 1: Use (standard, non-improved) sums and products of Witt vectors.
- Method 2: Use the formula for the Greenberg transform.
- Method 3: Use the formula of GT to make simplifications on  $J_3$ .

# The Table

|    | Meth    | od 1   | Meth     | od 2    | Method 3    |          |  |
|----|---------|--------|----------|---------|-------------|----------|--|
| p  | time    | mem.   | time     | mem.    | time        | mem.     |  |
| 5  | 407.089 | 376.78 | 0.480    | 21.28   | 0.990       | 36.91    |  |
| 7  |         |        | 7.300    | 40.97   | 5.089       | 33.22    |  |
| 11 |         |        | 421.090  | 1010.03 | 289.439     | 103.94   |  |
| 13 |         |        | 6542.590 | 4175.28 | 7496.840    | 356.16   |  |
| 17 |         |        |          |         | 45967.959   | 1982.28  |  |
| 19 |         |        |          |         | 267733.840  | 3650.62  |  |
| 23 |         |        |          |         | 1574171.979 | 13647.28 |  |

Table: Computations of  $J_3$ . (Time in sec., memory in MB.)



### **Recursive Definition**

A general formula for the Greenberg transform was crucial to many of the results.

The starting point for the formula is the following theorem.

#### Theorem

Let  $f(x,y) \in W(k)[x,y]$ , and let  $f_n$  be defined recursively by  $f_0 \stackrel{
m det}{=} f$  and

$$f_0^{p^n} + pf_1^{p^{n-1}} + \dots + p^n f_n = f^{\sigma^n} (x_0^{p^n} + px_1^{p^{n-1}} + \dots + p^n x_n, y_0^{p^n} + py_1^{p^{n-1}} + \dots + p^n y_n)$$

Then,  $\mathscr{G}(\mathbf{f}) = (f_0, f_1, ...)$  where  $f_i$  is the reduction modulo p of  $\mathbf{f}_i$ . (Remember that  $\sigma$  is the Frobenius of  $W(\mathbb{k})$ .)

# Taylor Expansion

The idea is to use the Taylor expansion:

$$\boldsymbol{f}^{\sigma^{n}}(\boldsymbol{x}_{0}^{p^{n}} + p\boldsymbol{x}_{1}^{p^{n-1}} + \dots + p^{n}\boldsymbol{x}_{n}, \boldsymbol{y}_{0}^{p^{n}} + p\boldsymbol{y}_{1}^{p^{n-1}} + \dots + p^{n}\boldsymbol{y}_{n}) = \sum_{r=0}^{\infty} p^{r} \sum_{i=0}^{r} (\boldsymbol{f}^{\sigma^{n}})^{(i,r-i)}(\boldsymbol{x}_{0}^{p^{n}}, \boldsymbol{y}_{0}^{p^{n}}) W_{n-1}(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n})^{i} W_{n-1}(\boldsymbol{y}_{1}, \dots, \boldsymbol{y}_{n})^{r-i}$$

where,

$$(\boldsymbol{f}^{\sigma^n})^{(i,r-i)} \stackrel{\text{def}}{=} \frac{1}{i!(r-i)!} \frac{\partial^r \boldsymbol{f}^{\sigma^n}}{\partial^i \partial^{r-i}},$$

and

$$W_{n-1}(X_1,\ldots,X_n) = X_1^{p^{n-1}} + p X_2^{p^{n-2}} + \cdots + p^{n-1}X_n.$$

1JL

#### Notation

We need some notation. Let  $m{g} \stackrel{\mathrm{def}}{=} \sum_{i,j} m{a}_{i,j} m{x}^i m{y}^j \in m{W}(\Bbbk)[m{x},m{y}].$ 

 Write  $a_{i,j} = \sum_{k=0}^{\infty} a_{i,j,k} p^k$  (with the Teichmüller repres.  $a_{i,j,k}$ ). Define  $\xi_k(g) \stackrel{\text{def}}{=} \sum_{i,j} a_{i,j,k} x^i y^j$ . (Hence,  $g = \sum_{k=0}^{\infty} \xi_k(g) p^k$ .) Define  $g^{(i,j)} \stackrel{\text{def}}{=} \frac{1}{i|i|} \frac{\partial^{i+j}}{\partial^i \partial j} g$ , and  $g_{i,j,k} \stackrel{\text{def}}{=} \xi_k(g^{(i,j)})$ . Define  $D_{k,n}^{i,j}$  to be the coefficient of  $t^k$  in  $(tx_1^{p^{n-1}} + t^2x_2^{p^{n-2}} + \dots + t^nx_n)^i(ty_1^{p^{n-1}} + t^2y_2^{p^{n-2}} + \dots + t^ny_n)^j$ (E.g.,  $D_{4n}^{1,2} = 2x_1^{p^{n-1}}y_1^{p^{n-1}}y_2^{p^{n-2}} + x_2^{p^{n-2}}y_1^{2p^{n-1}}$ .) Finally,  $D_{k,n,l}^{i,j} \stackrel{\text{def}}{=} \xi_l(D_{k,n}^{i,j}).$ 

13r

### The Formula

# Let $f \in W(\mathbb{k})[x, y]$ . 1 For $l \ge 0$ , let $\{\mathcal{G}_{l,1}, \dots, \mathcal{G}_{l,N_l}\}$ be the monomials of $(f^{\sigma^l})_{i,r-i,l-j}(x_0^{p^l}, y_0^{p^l})D_{k,l,j-k}^{i,r-i}$ , for $0 \le i \le r \le j, k \le l$ . 2 If l > 1, $\mathcal{G}_{l,N_l+i+1} \stackrel{\text{def}}{=} \eta_{l-i}(\mathcal{G}_{i,1}, \dots, \mathcal{G}_{i,N_i+i})$ , for $i \in \{0, \dots, (l-1)\}$ . 3 Let

$$\boldsymbol{f}_{l} \stackrel{\text{def}}{=} \sum_{i=1}^{N_{l}+l} \boldsymbol{\mathfrak{g}}_{l,i} = \sum_{r=0}^{l} \sum_{i=0}^{r} \sum_{j=r}^{l} \sum_{k=r}^{j} (\boldsymbol{f}^{\sigma^{l}})_{i,r-i,l-j} (\boldsymbol{x}_{0}^{p^{l}}, \boldsymbol{y}_{0}^{p^{l}}) D_{k,l,j-k}^{i,r-i} \\ + \sum_{i=0}^{l-1} \eta_{l-i} (\boldsymbol{\mathfrak{g}}_{i,1}, \dots, \boldsymbol{\mathfrak{g}}_{i,N_{i}+i})$$

#### Theorem

We have that  $\mathscr{G}(f) = (f_0, f_1, ...)$ , where  $f_i$  is the reduction modulo p of  $f_i$ .

L. Finotti (U of TN)

Lift. j-Inv. and Comp. w. Witt vec

UCSB - 01/11/13 45 / 47

## The $G_i$ 's

With the notation above, let  $\mathfrak{G}_i = (\mathfrak{G}_{i,1}, \dots \mathfrak{G}_{i,N_i+i})$ . Then:

•  $(\mathcal{G}_{0,1},\ldots,\mathcal{G}_{0,N_0})$  is the vector of monomials of f.

•  $(\mathcal{G}_{1,1},\ldots,\mathcal{G}_{1,N_1})$  are the monomials from  $(\boldsymbol{f}^{\sigma})_{i,r-i,1-j}(\boldsymbol{x}^p_0,\boldsymbol{y}^p_0)D^{i,r-i}_{k,1,j-k}$ , for  $0 \leq i \leq r \leq j,k \leq 1$ , and  $\mathcal{G}_{1,N_1+1} = \eta_1(\mathcal{G}_0)$ . Notation: We write  $\eta_k(\boldsymbol{f})$  for  $\eta_k(\mathcal{G}_0)$ , i.e., the evaluation of  $\eta_k$  at a vector made of the monomials of  $\boldsymbol{f}$ .

•  $(\mathcal{G}_{2,1}, \ldots, \mathcal{G}_{0,N_2})$  are the monomials from  $(\boldsymbol{f}^{\sigma^2})_{i,r-i,2-j}(\boldsymbol{x}_0^{p^2}, \boldsymbol{y}_0^{p^2})D_{k,2,j-k}^{i,r-i}$ , for  $0 \le i \le r \le j, k \le 2$ ,  $\mathcal{G}_{2,N_2+1} = \eta_2(\mathcal{G}_0)$ , and  $\mathcal{G}_{2,N_2+2} = \eta_1(\mathcal{G}_1)$ .

Then, the  $f_n$  above is the sum of the entries of  $\mathfrak{G}_n$ .

# Thank you!

