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Background Witt Vectors

p-Adic Integers

Let:

p be a prime, r ∈ Z>0, and q
def
= pr

Qq be the unramified extension of Qp of degree r;

Zq be the ring of integers of Qq.

Then Zq is a p-adic ring (or strict p-ring) with residue field Fq.

Question

Given a perfect field k of characteristic p, is there a p-adic ring Rk with
residue field k?

Yes! Witt gave an explicit construction of such ring!
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Background Witt Vectors

Constructing W(Fq)

Let µm denote the m-th roots of unity. We have:

µq−1 ⊆ Zq (Hensel’s Lemma).

{0} ∪ µq−1 is a complete set of representatives of Fq in Zq.
a ∈ Zq has a unique representation of the form a =

∑∞
i=0 aip

i with
ai ∈ {0} ∪ µq−1.

We can then identify a with (ā0, ā1, ā2, . . .). But how do we add and
multiply these elements now? We have

(ā0, ā1, ā2, . . .) + (b̄0, b̄1, b̄2, . . .) = (S0(ā0, b̄0), S1(ā0, ā1, b̄0, b̄1), . . .),

where Sn ∈ Z[X0, X
1/p
1 , . . . , X

1/pn

n , Y0, Y
1/p
1 , . . . , Y

1/pn

n ]. The product is
similar.
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Background Witt Vectors

Constructing W(Fq) (cont.)

Better idea: to identify a =
∑
aip

i with (ā0, ā
p
1, ā

p2

2 , . . .). Then:

(ā0, ā1, ā2, . . .) + (b̄0, b̄1, b̄2, . . .) = (S0(ā0, b̄0), S1(ā0, ā1, b̄0, b̄1), . . .),

(ā0, ā1, ā2, . . .) · (b̄0, b̄1, b̄2, . . .) = (P0(ā0, b̄0), P1(ā0, ā1, b̄0, b̄1), . . .),

where Sn, Pn ∈ Z[X0, X1, . . . , Xn, Y0, Y1, . . . , Yn]. (Sn and Pn depend
only on p.)

Hence, we have an isomorphism of ring F∞q with sum and product defined
by polynomial equations above and Zq.
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Background Witt Vectors

The Ring W(k)

Given a perfect field k of characteristic p, this construction makes k∞ a
p-adic ring with residue field k (with p = (0, 1, 0, . . .)), the ring of Witt
vectors over k, denoted by W(k).

As we can see from the power series identification, we have that

Wn(k)
def
= W(k)/(pn) is the truncation of vectors to the n-th coordinate,

and hence we call this quotient ring the ring of Witt vectors of length n.

The p-th power Frobenius σ of k lifts to W(k) by
σ(a0, a1, . . .) = (σ(a0), σ(a1), . . . , ) = (ap0, a

p
1, . . .).
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Background Witt Vectors

Computing in W(k)

To compute with Wn(k), need Si, Pi for i ∈ {0, . . . , (n− 1)}.

Problem: These polynomials are huge! E.g., for p = 31, S2 has 152,994
monomials!

Thus, if k = Fq, one should make computations in Zq.

But, depending on k, we cannot see W(k) as a known local ring, and so
we might need to use Sn and Pn for sums and products.
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Background Witt Vectors

The Polynomials Sn and Pn.

Sn and Pn are given recursively:

Sn = (Xn +Yn) +
1

p
(Xp

n−1 +Y p
n−1−S

p
n−1) + · · ·+ 1

pn
(Xpn

0 +Y pn

0 −S
pn

0 ),

and

Pn = (Xpn

0 Yn +Xpn−1

1 Y pn−1 + · · ·+XnY
pn

0 )

+
1

p
(Xpn

0 Y pn−1 + · · ·+Xp
n−1Y

pn

0 )

...

+
1

pn
(Xpn

0 Y p
n

0 )− 1

pn
P p

n

0 − · · · −
1

p
P pn−1

+ p(· · · ).

We cannot plug in coordinates on these formulas! Have to expand and
simplify!
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Background Witt Vectors

Teichmüller Lift

Remember that we have a lift of the Frobenius from k to W(k). We also
the Teichmüller lift τ : a 7→ (a, 0, 0, . . .), which yields the following
diagram:

W×
σ //

π
��

W×

π




k
×

τ

VV

σ // k×

τ

HH

Question

Can we also lift the Frobenius for curves over k?
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Background Witt Vectors

Curves

More precisely, given a curve C/k and if φ : C → Cσ is the Frobenius
map, is there a lifting C/W for which we can lift the Frobenius:

C(W(k̄))
φ //

π
��

Cσ(W(k̄))

π
��

C(k̄)
φ // Cσ(k̄)

Answer: Yes, for ordinary elliptic curves and Abelian varieties (Deuring
and Serre-Tate), but no for higher genus curves (Raynaud). In the case of
elliptic curves we also have a Teichmüller lift.

Also, Mochizuki showed that one can lift the Frobenius for some curves of
genus g ≥ 2 if we allow singularities (at (p− 1)(g − 1) points).
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Canonical Liftings

Ordinary Elliptic Curve

An elliptic curve (given by y2 = x3 + ax+ b) over a field k of
characteristic p > 3 is ordinary if E[p] ∼= Z/p. (Or, equivalently, if the
coefficient of xp−1 in (x3 + ax+ b)(p−1)/2 is non-zero.) Otherwise, the
elliptic curve is said to be supersingular.

Note: Only finitely many elliptic curves (up to isomorphism) are
supersingular.

We can lift the Frobenius for ordinary elliptic curves, i.e., if k is a perfect
field with char(k) = p and E/k : y20 = x30 + a0x0 + b0, then there exists
a = (a0, a1, . . .), b = (b0, b1, . . .) ∈W such that
E/W : y2 = x3 + ax+ b has a lifting of the Frobenius:

E(W(k̄))
φ //

π
��

Eσ(W(k̄))

π
��

E(k̄)
φ // Eσ(k̄)
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Canonical Liftings

Elliptic Teichmüller Lift

Moreover, the curve E above is unique up to isomorphism and it is called
the canonical lifting of E. Canonical liftings are often used in point
counting (e.g., Satoh’s algorithm) and have applications in coding theory
and computing torsion points of higher genus curves.
As with Witt vectors, we also have a section of the reduction modulo p,
the so called elliptic Teichmüller lift τ :

E(W(k̄))
φ //

π
��

Eσ(W(k̄))

π
��

E(k̄)

τ

UU

φ // Eσ(k̄)

τσ

UU

Also, τ is a group homomorphism, and one can show that:

τ(x0, y0) = ((F0, F1, F2, . . .), (y0, y0G1, y0G2, . . .)),

where Fi, Gi ∈ k[x0].
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Canonical Liftings

Error Correcting Codes

Voloch and Walker used canonical liftings and the elliptic Teichmüller lift
to create error-correcting codes. The bounds for the parameters (which
measure “how good” the resulting codes are likely to be) depend on the
degrees of Fi’s and Gi’s, with lower degrees giving better bounds. They
showed that F1 and G1 had minimal degrees, making the canonical lifting
the natural choice.

On the other hand, Fi and Gi for i ≥ 2 are not minimal.

One should note that, one can construct codes with more general liftings
of curves in a very similar way.
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Canonical Liftings

Error Correcting Codes (cont.)

With elliptic curves, we have:

Theorem

Let E/k as above and Ẽ/W3(k) be a lifting for which we have a lifting of
points ν : E(k̄)→ Ẽ/W3(k̄) having “minimal degrees”. Then Ẽ is the
canonical lifting of E (modulo p3) and we have a lifting of the Frobenius
on the affine part of E so that the following diagram commutes:

Ẽ(W3(k̄))
φ̃ //

π

��

Ẽ
σ
(W3(k̄))

π

��
E(k̄)

ν

TT

φ // Eσ(k̄)

νσ

TT

Moreover, any supersingular elliptic curve will yield larger degrees.
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Canonical Liftings

Minimal Degree Liftings

Therefore, the notions of ordinary elliptic curve and its canonical lifting (at
least modulo p3) can be defined strictly from the point of view of minimal
degree liftings:

E is ordinary if there is a lifting satisfying the lower bound on the
degrees of the lifting map;

E is the canonical lifting of E if there is a lifting map satisfying the
lower bound.

On the other hand, in this way, these notions can be generalized to higher
genus curves, and in a very similar way, one can obtain very similar results
for hyperelliptic curves!

L. Finotti (U of TN) Lift. j-Inv. and Comp. w. Witt vec UCSB – 01/11/13 14 / 47



Canonical Liftings

Mochizuki Liftings

For genus 2 curves (and so hyperelliptic) in characteristic 3, one can have
a Mochizuki lifting of the Frobenius if one removes (some) 2 points from
the curve. These two points are invariant by the hyperelliptic involution
and thus can be put at “infinity”.

We then have:

Theorem (F.-Mochizuki)

The notions of “ordinary” and “canonical lifting” (modulo p2) from the
theory of minimal degree liftings coincide with the ones coming from
Mochizuki’s theory.

Thus, we were able to give a concrete example of a family of Mochizuki
liftings.
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Canonical Liftings

The Jn Functions

Let, as before, E/k be an ordinary elliptic curve and E/W(k) be its
canonical lifting.

Thus if kord denotes the set of ordinary j-invariants in k, we have
functions Ji : kord → k such that (j0, J1(j0), J2(j0), . . .) is the j-invariant
of the canonical lifting of the curve with j-invariant j0 ∈ kord.

Mazur’s Question (to John Tate)

What kind of functions are these Jn? Can one say anything about them?
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Functions Jn

First Computations

Examples:

p = 5 J1 = 3j30 + j40 ;
J2 =
3j50 +2j100 +2j130 +4j140 +4j150 +4j160 +j170 +4j180 +j190 +j200 +3j230 +j240 .

Question: Can these functions all be polynomials?

p = 7 J1 = 3j50 + 5j60 ;
J2 =
(3j210 +6j280 +3j330 +5j340 +4j350 +2j360 +3j370 +6j380 +3j390 +5j400 +5j410 +
5j420 +2j430 +3j440 +6j450 +3j460 +5j470 +5j480 +3j490 +3j540 +5j550 )/(1+j70).

Note: If j0 = −1, then E is supersingular, i.e., no canonical lifting.
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Functions Jn

Pseudo-Canonical Liftings

(Superficial) Answer to Mazur’s Question

For any p, we have that Jn ∈ Fp(X).

Tate’s Question

Is there a supersingular value of j0 (for some fixed characteristic p) for
which all functions Jn are regular at j0. (E.g., j0 = 0 for p = 5 for J1 and
J2?)

This lead us to define:

Definition

The elliptic curve over W(k) given by j
def
= (j0, J1(j0), J2(j0), . . .) for such

a supersingular j0 is a pseudo-canonical lifting of the elliptic curve given
by j0.Tate’s question: do they exist at all?
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Functions Jn

Answer to Tate’s Question

Theorem

Let j0 6∈ kord and p ≥ 5. Then:

1 J1 is regular at j0 if, and only if, j0 is either 0 or 1728.

2 J2 is regular at j0 if, and only if, j0 is 0.

3 For n ≥ 3, we have that Jn is never regular at j0.

For p = 2, 3 (in which case only j0 = 0 is supersingular), we have that Ji
is regular at 0 if, and only if, i ≤ 11 for p = 2 or i ≤ 5 for p = 3.

So, (unrestricted) pseudo-canonical liftings don’t exits.
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Functions Jn

Answer to Mazur’s Question

We need some notation: let

ssp(X)
def
=

∏
j supers.

(X − j)

(the supersingular polynomial) and

Sp(X)
def
=

∏
j supers.
j 6=0,1728

(X − j).

One then has that ssp(X), Sp(X) ∈ Fp[X], and Sp(0), Sp(1728) 6= 0.
Also, let

ι =


8, if p = 2;

3, if p = 3;

2, if p = 31;

1, otherwise.
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Functions Jn

Answer to Mazur’s Question

Then, we have:

Theorem

Let Ji = Fi/Gi, with Fi, Gi ∈ Fp[X], (Fi, Gi) = 1, and Gi monic. Also,
let ri = (i− 1)pi−1, si = ((i− 3)pi + ipi−1)/3 and s′i = max{0, si}.
Then, for all i ∈ Z>0 we have:

1 degFi − degGi = pi − ι;
2 if p ≥ 5, then Gi = Sp(X)ip

i−1+(i−1)pi−2 ·Hi, where
Hi | Xs′i · (X − 1728)ri ;

3 if p = 2, 3, then Gi = Xti , where ti ≤ pi.

Also, there is a formula for Ji(X) (which can be simplified if p ≥ 3)
obtained from the classical modular polynomial.
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Functions Jn

Modular Functions

Assume from now p ≥ 5. Another perspective: if E/k, ordinary, is given
by y20 = x30 + a0x0 + b0, and E/W is its canonical lifting and (after some
“choice”) is given by y2 = x3 + ax+ b, then

a = (A0, A1, A2, . . .),

b = (B0, B1, B2, . . .),

where Ai, Bi ∈ k(a0, b0). In fact, if H is the Hasse invariant of E (i.e.,
the coefficient of xp−10 is (x30 + a0x0 + b0)

(p−1)/2), then Ai, Bi possibly
have poles only at the zeros of H (or ∆ = 4a30 + 27b20).

Question

What are the weights of the Ai’s and Bi’s? What are the order of the
poles?
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Functions Jn

Modular Functions (cont.)

Conjecture

1 Ai has weight 4pi.

2 Bi has weight 6pi.

3 Ai and Bi have poles of order at most (i− 1)p+ 1 at the zeros of H.
(At least for i ≤ 2. Not enough data yet.)

4 Ai and Bi have no zeros at zeros of ∆.

So, if true, the isomorphism (a0, b0)↔ (λ40a0, λ
6
0b0) corresponds, via

canonical liftings, to the isomorphism (a, b)↔ (λ4a,λ6b), where
λ = τ(λ0) = (λ0, 0, 0, . . .).
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Functions Jn

Modular Polynomial

The classical modular polynomial is a polynomial Φp(X,Y ) ∈ Z[X,Y ]
such that two elliptic curves with j-invariants j1 and j2 have a (roughly
speaking) “p-to-one morphism” between them if and only if Φp(j1, j2) = 0.

Then, the lifting of the Frobenius gives us:

Φp((j0, J1(j0), J2(j0), . . .), (j
p
0 , J1(j0)

p, J2(j0)
p, . . .)) = 0.

So, to compute Ji(X), we use

Φp((X, J1(X), J2(X), . . .), (Xp, J1(X)p, J2(X)p, . . .)) = 0.

We just expand it as Witt vectors, and we can solve in the i-th coordinate
for Ji−1(X). (Difficult computation!)
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Greenberg Transform

Greenberg Transform

The Greenberg transform is a crucial step in the proof of the main
theorems and in concrete computations.
Let f ∈W(k)[x,y]. By letting x0 = (x0, x1, . . .) and y0 = (y0, y1, . . .),
we have f(x0,y0) = (f0, f1, f2, . . .) ∈W(k[x0, x1, . . . , y0, y1, . . .]). We

call G (f)
def
= (f0, f1, . . .) the Greenberg transform of f .

Examples

G (x+ y) = (S̄0, S̄1, S̄2, . . .)

G (x · y) = (P̄0, P̄1, P̄2, . . .).
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Greenberg Transform

Explicit Example of a Greenberg Transform

Let E/W(F5) : y2 = x3 + 1. Then, the first three equations of the
Greenberg Transform are:

1 y20 = x30 + 1;

2 2y50y1 = 4x120 + 3x100 x1 + 3x90 + 3x60 + 4x30;

3 4y250 y
5
1 + 2y250 y2 + y101 = 4x720 + 3x690 + 3x606 + 4x630 + 2x580 x1 + 3x570 +

3x560 x
2
1 +x550 x1 +x540 x

3
1 + 2x540 + 3x530 x

2
1 +x520 x

4
1 + 4x520 x1 + 4x510 x

3
1 +

2x500 x
5
1+4x500 x

2
1+3x500 x2+2x490 x

4
1+3x490 x1+3x480 x

3
1+x480 +2x460 x

4
1+

4x440 x
2
1+x430 x

4
1+4x430 x1+3x420 x

3
1+4x410 x

2
1+4x400 x1+4x390 x

3
1+4x390 +

4x370 x1+x360 x
3
1+4x360 +4x350 x

2
1+3x320 x

2
1+3x310 x1+3x290 x

2
1+4x280 x1+

x270 +3x250 x
10
1 +x250 x1 +2x220 x1 +2x210 +3x180 +4x120 +3x90 +3x60 +4x30
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Greenberg Transform

Computing Ji

One way to compute Ji(X) is to compute the Greenberg transform of
Φp(x,y), evaluate at x = (X, J1(X), J2(X), . . .),
y = (Xp, J1(X)p, J2(X)p, . . .), set coordinates equal to zero and solve.

We deduced a (very long and highly recursive) formula for the Greenberg
transform. From that one can get an immediate formula for the Ji’s.

But, the necessary evaluation makes the computation simpler if one
removes terms that vanish. In fact the simplification also helps in proving
the main theorems.
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Proofs

A Word About the Proofs

The proof of the main theorems was done by:

1 Use the formula for the Greenberg transform applied to Φp(x,y).

2 Simplify it by removing unnecessary terms.

3 Use results of Kaneko-Zagier on J1.

4 Some results followed, others were rephrased as questions on
coefficients of Φp.

5 Answered the questions above. (Thanks to A. Sutherland.)
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Computations

Computing with Witt Vectors

Note that we cannot compute sums and products by plugging in the
entries in the recursive formulas of Sn and Pn, as those have p in the
denominator. Thus, in general, one has to expand those formulas.

Problem: These polynomials are huge! E.g., S2 has 152,994 monomials for
p = 31.

I was not able to compute S4 for p = 11 with 24 gigabytes of memory. So,
in general one cannot expect to make computations with Witt vectors of
length 5 (or more) over fields of characteristic 11.

In some particular cases, such as over finite fields, there are efficient
methods (via canonical isomorphisms) which avoids that. But often times
one has to resort to the defining polynomials. (E.g., over polynomial rings,
as when we compute the Greenberg transform.)
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Computations

Computing with Witt Vectors (cont.)

Ideas to improve computations:

Avoid expanding unnecessary powers: to compute (α+ β)n is better
to first add α and β and then take an n-th power than to expand and
store the polynomial (X + Y )n and then evaluate it at X = α and
Y = β.

Perform (most) computations in characteristic p.

Replace Sn and Pn with simpler polynomials that work for both!

Perhaps evaluate the polynomials above “on the fly”, without having
to precompute and store them.
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Computations

Computing with Witt Vectors (cont.)

To clarify the last item: instead of computing and storing the polynomial

η1(X,Y ) =
Xp + Y p − (X + Y )p

p
= −

p−1∑
i=1

1

p

(
p

i

)
XiY p−i,

one can compute η1(a, b) with the routine

res=0

for i in {1...(p-1)} do

res = res - (binom(p,i)/p) * a^(p-i) * b^i

end for

return res
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Computations

Auxiliary Polynomials

Definition

Define η0(X1, . . . , Xr) = X1 + · · ·+Xr and, recursively, for k ≥ 1,

η0(X1, . . . , Xr)
pk + pη1(X1, . . . , Xr)

pk−1

+ · · ·+ pkηk(X1, . . . , Xr)

= Xpk

1 + · · ·+Xpk

r

Proposition

We have that ηk(X0, Y0) = Sk(X0, 0, . . . , 0, Y0, 0, . . . 0) and
ηk(X1, . . . , Xr) has integral coefficients.
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Computations

Auxiliary Polynomials

The functions ηi “replace divisions by p” in the recursive formulas for Sn,
Pn and the Greenberg transform. (Only two variables are needed!)

(Note that ηi is much simpler than Si.)

The formula for the Greenberg transform heavily rely on these functions!

Moreover, their reduction modulo p can be computed mostly on
characteristic p, they avoid expanding powers, and can be computed on
the fly.
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Computations

Witt Sum with ηi’s (cont.)

We have that S̄n =
∑

t∈Sn t, where:

S0 = (x0, y0)

S1 = (x1, y1, η1(S0))

S2 = (x2, y2, η2(S0), η1(S1))

S3 = (x3, y3, η3(S0), η2(S1), η1(S2))

...
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Computations

Witt Products with ηi’s

Similarly, we have that P̄n =
∑

t∈Pn t, where:

P0 = (x0y0)

P1 = (x1y
p
0 , x

p
0y1)

P2 = (x2y
p2

0 , x
p
1y
p
1 , x

p2

0 y2, η1(P1))

P3 = (x3y
p3

0 , x
p
2y
p2

1 , x
p2

1 y
p
2 , x

p3

0 y3, η2(P1), η1(P2))

...
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Computations

Different Methods

There are two ways to compute ηk(a1, . . . , an), for ai ∈ k (in
characteristic p).

We compute and store the polynomials η̄k(X,Y ) ∈ Fp[X,Y ] (two
variables only) and use a recursive algorithm to compute
ηk(a1, . . . , an).

We compute and store some expansion of some binomials coefficients
as Witt vectors (much smaller to store and quicker to compute) and
use a highly recursive algorithm to compute ηk(a1, . . . , an).

In either case we have great gains when performing computation with Witt
vectors.

Example

For p = 11 we’ve computed S3 using the usual recursive formula and using
the formula for the GT. The former took 130.56 hours, while the latter
took 7.20 hours. (The computation of η̄i(X,Y ) for i = 1, 2, 3 takes only
0.19 seconds in this case.)
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Computations

Comparing the Methods

The 24 gigabytes of memory available were not enough to compute S4
with either method. On the other hand, we do not need S4 to add Witt
vectors with our new methods.

Example

We can add two vectors in W6(F1110) in about 1 second, after we spend
approximately 3.61 hours to compute the η̄i(X,Y ) for i ∈ {1, 2, 3, 4, 5}.
Using the other method, we need only 5.750 seconds to compute the Witt
vectors of the binomial coefficients, but then it takes us about 26 seconds
on average to add two Witt vectors in W6(F1110).
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Computations

Evaluating a Polynomial

The table below give times (in seconds) and memory usages (in MB) to
evaluate a randomly chosen f ∈Wn+1(k)[x,y], where
degx f ,degy f ≤ d, at a randomly chosen (x0,y0).

Sum and Prod. GT form.
k n d η̄i time time mem. time mem.

F310 9 20 108.78 433.31 12.22 130.28 16.40
F710 6 20 3554.78 2410.49 28.00 600.23 28.62
F1110 5 20 5794.89 3564.62 37.44 839.37 30.88
F1310 5 15 29854.75 4608.84 70.63 1045.08 49.00
F1910 4 15 2760.36 2301.17 32.44 983.08 26.72

The sums and products were already the optimized ones!
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Computations

Performance Differences for the GT

The following table shows the times and memory needed to compute the
GT of

x3 + (a0, a1, a2)x
2 + (b0, b1, b2)x+ (c0, c1, c2),

with ai’s, bi’s and ci’s unknowns. (“orig.” means evaluate the sums and
products, “new” means use the GT formula.)
In Sage:

char. torig. (sec) tnew (sec) morig. (MB) mnew (MB)
5 0.50 0.29 5.82 4.82
7 27.48 1.30 65.82 33.82
11 10265.87 196.01 3566.32 1721.82
13 −− 1368.54 −− 8416.57

Note how demanding the computation of the GT is! E.g., the third
coordinate for p = 11 is a polynomial in 12 variables with 31, 216, 093
terms. For p = 13, it has 153, 065, 983 terms!
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Computations

Computing Times for J3

The following table list times and memory usages to compute J3 in the
three different ways:

Method 1: Use (standard, non-improved) sums and products of Witt
vectors.

Method 2: Use the formula for the Greenberg transform.

Method 3: Use the formula of GT to make simplifications on J3.
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Computations

The Table

Method 1 Method 2 Method 3
p time mem. time mem. time mem.
5 407.089 376.78 0.480 21.28 0.990 36.91
7 −− −− 7.300 40.97 5.089 33.22
11 −− −− 421.090 1010.03 289.439 103.94
13 −− −− 6542.590 4175.28 7496.840 356.16
17 −− −− −− −− 45967.959 1982.28
19 −− −− −− −− 267733.840 3650.62
23 −− −− −− −− 1574171.979 13647.28

Table: Computations of J3. (Time in sec., memory in MB.)
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Formula for the Greenberg Transform

Recursive Definition

A general formula for the Greenberg transform was crucial to many of the
results.
The starting point for the formula is the following theorem.

Theorem

Let f(x,y) ∈W(k)[x,y], and let fn be defined recursively by f0
def
= f

and

fp
n

0 + pfp
n−1

1 + · · ·+ pnfn =

fσ
n
(xp

n

0 + pxp
n−1

1 + · · ·+ pnxn,y
pn

0 + pyp
n−1

1 + · · ·+ pnyn)

Then, G (f) = (f0, f1, . . .) where fi is the reduction modulo p of f i.
(Remember that σ is the Frobenius of W(k).)
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Formula for the Greenberg Transform

Taylor Expansion

The idea is to use the Taylor expansion:

fσ
n
(xp

n

0 + pxp
n−1

1 + · · ·+ pnxn,y
pn

0 + pyp
n−1

1 + · · ·+ pnyn) =
∞∑
r=0

pr
r∑
i=0

(fσ
n
)(i,r−i)(xp

n

0 ,y
pn

0 )Wn−1(x1, . . . ,xn)iWn−1(y1, . . . ,yn)r−i

where,

(fσ
n
)(i,r−i)

def
=

1

i!(r − i)!
∂rfσ

n

∂i∂r−i
,

and
Wn−1(X1, . . . , Xn) = Xpn−1

1 + pXpn−2

2 + · · ·+ pn−1Xn.
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Formula for the Greenberg Transform

Notation

We need some notation. Let g
def
=
∑

i,j ai,jx
iyj ∈W(k)[x,y].

1 Write ai,j =
∑∞

k=0 ai,j,kp
k (with the Teichmüller repres. ai,j,k).

2 Define ξk(g)
def
=
∑

i,j ai,j,kx
iyj . (Hence, g =

∑∞
k=0 ξk(g)pk.)

3 Define g(i,j)
def
= 1

i!j!
∂i+j

∂i∂j
g, and gi,j,k

def
= ξk(g

(i,j)).

4 Define Di,j
k,n to be the coefficient of tk in

(txp
n−1

1 + t2xp
n−2

2 + · · ·+ tnxn)i(typ
n−1

1 + t2yp
n−2

2 + · · ·+ tnyn)j .

(E.g., D1,2
4,n = 2xp

n−1

1 yp
n−1

1 yp
n−2

2 + xp
n−2

2 y2p
n−1

1 .)

5 Finally, Di,j
k,n,l

def
= ξl(D

i,j
k,n).

L. Finotti (U of TN) Lift. j-Inv. and Comp. w. Witt vec UCSB – 01/11/13 44 / 47



Formula for the Greenberg Transform

The Formula

Let f ∈W(k)[x,y].

1 For l ≥ 0, let {Gl,1, . . . ,Gl,Nl} be the monomials of

(fσ
l
)i,r−i,l−j(x

pl

0 ,y
pl

0 )Di,r−i
k,l,j−k, for 0 ≤ i ≤ r ≤ j, k ≤ l.

2 If l > 1, Gl,Nl+i+1
def
= ηl−i(Gi,1, . . . ,Gi,Ni+i), for i ∈ {0, . . . , (l − 1)}.

3 Let

f l
def
=

Nl+l∑
i=1

Gl,i =

l∑
r=0

r∑
i=0

l∑
j=r

j∑
k=r

(fσ
l

)i,r−i,l−j(x
pl

0 ,y
pl

0 )Di,r−i
k,l,j−k

+

l−1∑
i=0

ηl−i(Gi,1, . . . ,Gi,Ni+i)

Theorem

We have that G (f) = (f0, f1, . . .), where fi is the reduction modulo p of
f i.
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Formula for the Greenberg Transform

The Gi’s

With the notation above, let Gi = (Gi,1, . . .Gi,Ni+i). Then:

(G0,1, . . . ,G0,N0) is the vector of monomials of f .

(G1,1, . . . ,G1,N1) are the monomials from

(fσ)i,r−i,1−j(x
p
0,y

p
0)D

i,r−i
k,1,j−k, for 0 ≤ i ≤ r ≤ j, k ≤ 1, and

G1,N1+1 = η1(G0). Notation: We write ηk(f) for ηk(G0), i.e., the
evaluation of ηk at a vector made of the monomials of f .

(G2,1, . . . ,G0,N2) are the monomials from

(fσ
2
)i,r−i,2−j(x

p2

0 ,y
p2

0 )Di,r−i
k,2,j−k, for 0 ≤ i ≤ r ≤ j, k ≤ 2,

G2,N2+1 = η2(G0), and G2,N2+2 = η1(G1).

Then, the fn above is the sum of the entries of Gn.
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Formula for the Greenberg Transform

Thank you!
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