1. Let f be a real-valued function defined on $[-3,4]$ with $f(0)=3$. The graph of the derivative f^{\prime} is shown below.

Graph of f^{\prime}
(a) On what intervals is f increasing? Explain.
(b) Find the x-coordinate of each inflection point of f on the interval $(-3,4)$.
(c) Find an equation for the tangent line to the graph of f at the point $(0,3)$
2. Consider the cylindrical coffee pot shown below where h is the depth in inches of the coffee in the pot as a function of time t measured in seconds. Suppose the volume V of the coffee in the pot is changing at a rate of $-5 \pi \sqrt{h}$ cubic inches per second.

(a) Show that $\frac{d h}{d t}=-\frac{\sqrt{h}}{5}$.
(b) Find h as a function of t given that $h=17$ at $t=0$.
(c) When is the coffee pot empty?
3. (a) Let $f(x)$ be the function defined by

$$
f(x)= \begin{cases}\sqrt{x+1} & \text { for } 0 \leq x \leq 3 \\ 5-x & \text { for } 3<x \leq 5\end{cases}
$$

Is f continuous at 3? Explain.
(b) Suppose $g(x)$ is given by

$$
g(x)= \begin{cases}k \sqrt{x+1} & \text { for } 0 \leq x \leq 3 \\ m x+2 & \text { for } 3<x \leq 5\end{cases}
$$

where m, k are constants. If g is differentiable at $x=3$, what are the values of k and m ?
4. (a) Compute

$$
\lim _{x \rightarrow 0} \frac{\tan \left(x^{2}\right)}{x}
$$

and justify your answer.
(b) Compute

$$
\lim _{x \rightarrow \infty} x^{1 / x}
$$

and justify your answer.
5. Consider the circle C of radius 2 centered at the origin.
(a) Find the slopes of the tangent lines to C at the points with y-coordinate -1 .
(b) Find the intersection point of the normal lines to these points.

