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Motivation



Wendy Carlos

American composer and
Grammy winner

Helped to popularize and
improve the Moog
synthesizer

Used creative and
unconventional tunings in
original compositions
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Carlos’ Best Known Works: Soundtracks

1971 1980 1982



Carlos’ Best Known Works: Albums

1968 1984 1986



An Interesting Tuning

On a standard keyboard or guitar, notes are equally spaced
with 100 cents between consecutive notes.

The Title Track on Beauty in the Beast uses equally spaced
notes with α and β cents between consecutive notes where

α � 77.995...
β � 63.814...

pγ � 35.097...q



An Interesting Tuning

On a standard keyboard or guitar, notes are equally spaced
with 100 cents between consecutive notes.

The Title Track on Beauty in the Beast uses equally spaced
notes with α and β cents between consecutive notes where

α � 77.995...
β � 63.814...

pγ � 35.097...q



An Interesting Tuning

On a standard keyboard or guitar, notes are equally spaced
with 100 cents between consecutive notes.

The Title Track on Beauty in the Beast uses equally spaced
notes with α and β cents between consecutive notes where

α � 77.995...
β � 63.814...
pγ � 35.097...q



Physics



An Ideal String with Fixed Endpoints (Or Open Pipe)

Vibrations periodic compression waves in air (sound).

The period T is the number of seconds in one cycle.

The (fundamental) frequency f � 1{T (in Hz � 1{sec) is
the number of cycles per second.

If L is the length of the string, then

f � v
2L

where v depends only on the density and tension.
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Harmonics (Octaves Give Same “Note”)
Standing Wave Frequency

f

2f � f

3f

4f � 2f � f

5f

Likewise, 6f � 3f , 8f � f , 10f � 5f , etc.



Harmonics (Octaves Give Same “Note”)
Standing Wave Frequency

f

2f � f

3f

4f � 2f � f

5f

Likewise, 6f � 3f , 8f � f , 10f � 5f , etc.



Harmonics (Octaves Give Same “Note”)
Standing Wave Frequency

f

2f � f

3f

4f � 2f � f

5f

Likewise, 6f � 3f , 8f � f , 10f � 5f , etc.



Harmonics (Octaves Give Same “Note”)
Standing Wave Frequency

f

2f � f

3f

4f � 2f � f

5f

Likewise, 6f � 3f , 8f � f , 10f � 5f , etc.



Harmonics (Octaves Give Same “Note”)
Standing Wave Frequency

f

2f � f

3f

4f � 2f � f

5f

Likewise, 6f � 3f , 8f � f , 10f � 5f , etc.



Harmonics (Octaves Give Same “Note”)
Standing Wave Frequency

f

2f � f

3f

4f � 2f � f

5f

Likewise, 6f � 3f , 8f � f , 10f � 5f , etc.



Timbre

In reality, a string vibrates at multiple harmonics simultaneously.

Which harmonics are emphasized and to what extent
determines the sound quality.

Waveform Sound

Link
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Link

Table: Different instruments playing the same frequency
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A Little Functional Analysis

In the Hilbert space L2pr0,2πsq, Dorthonormal decompositions

hpxq �
8̧

n��8
cneinx

where |cn| � |xhpxq,einxy| � length of the projection onto einx .

If hpxq is real and odd, then Euler’s formula implies

hpxq �
8̧

n�1

an sinpnxq

where an � 2icn P R is the amplitude of the nth harmonic.
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Example: Sawtooth Wave

Consider the 2π-periodic function spxq s.t.

spxq � π � x
2

on p0,2πq

spxq �
8̧

n�1

1
n

sinpnxq

Fourier series Graph

Analog synthesizers use sawtooths via subtractive synthesis.
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A Famous Identity

The Pythagorean Theorem holds for Hilbert spaces:

8̧

n��8
|cn|2 � ||hpxq||2

If we plug in the sawtooth spxq,

1
2

8̧

n�1

1
n2 �

8̧

n��8
|cn|2 � ||spxq||2

� 1
2π

» 2π

0

�
π � x

2


2

dx � π2

12
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Back to Frequencies and Notes

We define A2 � 110 Hz.

The octaves A1 � 55 Hz, A3 � 220 Hz, etc., are also A notes.

There is an equivalence relation on frequencies f ,g P p0,8q:

f � g ô f � 2ng for some n P Z
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A Little Algebra

Also, A1 and A2 are the same “distance” apart as A2 and A3.

We have isomorphisms of topological groups:

p0,8q
�

log2p
q // R
Z

expp2πi
q // S1 � C

frequencies notes circle group

Take unit of frequency � 110 Hz. Then for n P Z

r2ns (any A note) ÞÑ n � Z ÞÑ e2πin � 1

In general,
rf s ÞÑ log2pf q � Z ÞÑ e2πi log2pf q
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“Circle” of Fifths



The Perfect Fifth

Every class in p0,8q{ � has a unique representative in r1,2q.

(Every class in R{Z has a unique representative in r0,1q.)

r1,2q spans one octave.
Donly one A note in r1,2q, namely f � 1 (in units 110 Hz).

The third harmonic of f � 1 gives us a new note r3s � r3{2s
with 3{2 P r1,2q. (log2p3{2q P r0,1q)

The distance (ratio) between f � 1 and 3{2 is a perfect fifth.
It’s the most significant interval behind the octave.
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The Perfect Fourth, Major Third, . . .

The inverse of r3{2s in the group p0,8q{ � is

r3{2s�1 � r2{3s � r4{3s

with 4{3 P p1,2s (another new note in the interval).

The ratio 4{3 is a perfect fourth.

The fourth harmonic gives nothing new r4s � r1s.

The fifth harmonic gives rise to the major third 5{4.
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The Spiral of Fifths

This process will never end...

The subgroup generated by r3{2s is infinite because

log2p3{2q R Q

Q is dense R: we can get arbitrarily good rational
approximations a{b to log2p3{2q.

e2πi{b will generate a cyclic subgroup in S1 corresponding to a
division of the interval p1,2s into b equal pieces.
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Let’s Stop at 12 . . . Why?



12-Tone Equal Temperment Scale

1200 cents � whole interval, so notes are 100 cents apart.



One Octave on a Standard Keyboard

Where did the 5 (black keys) and 12 (total keys) come from?

Ideally, we’d want to divide the interval into as few pieces as
possible while getting a good approximation to the perfect fifth.
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Continued Fractions



Simple Continued Fractions

ra0;a1,a2, . . . ,ans :� a0 �
1

a1 �
1

a2 � � � � 1
an

Theorem

The infinite continued fraction

a0 �
1

a1 �
1

a2 � � � �

:� lim
nÑ8

ra0;a1,a2, . . . ,ans

converges if and only if the sum
°8

i�0 ai diverges.
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Unique Expansions

Theorem

Let α P R. There is a unique: continued fraction expansion

α � ra0;a1,a2, . . .s

s.t. a0 P Z and a1,a2, . . . are positive integers.

Theorem

The continued fraction expansion of α P R as above is infinite if
and only if α is irrational.

The continued fraction expansion is eventually periodic if and
only if α is a quadratic irrational.
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Examples of Continued Fraction Expansions

�13
5
� r�3;2,2s

?
7 � r2;1,1,1,4, . . .s

e � r2;1,2,1,1,4,1,1,6,1,1,8, . . .s

There is no known pattern in the expansion of π.

We don’t even know whether or not the terms in the expansion
of 3
?

2 are bounded.
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Convergents

Definition

The nth convergent of α � ra0;a1,a2, . . .s is

pn

qn
� ra0;a1,a2, . . . ,ans

with pn,qn relatively prime integers (qn ¡ 0).

Theorem

Suppose α R Q. Then the convergents pn{qn are best
approximations (and vice versa) in the following sense:

If a{b P Q is written is lowest terms and b   qn, then

|bα� a| ¡ |qnα� pn|
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Combinatorics of 12-Tone Chromatic Scale

log2p3{2q �
1

1� 1

1� 1

2� 1

2� 1
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1
2
  7

12
  31

53
  . . .   log2p3{2q   . . .   24

41
  3

5
  1
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Combinatorics of 12-Tone Chromatic Scale

log2p5{4q �
1

3� 1

9� 1

2� 1
2� � � �

9
28

  47
146

  . . .   log2p5{4q   . . .   19
59

  1
3

27{12 � 3{2 is good, but 24{12 ?� 5{4 is not as good.
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A Tuning of Wendy Carlos



Xenharmonic Tunings

Why do we have to start with an octave interval?

Wendy Carlos started with the interval r1,3{2q (perfect fifth),
and the divided this into equal pieces.

We get a new equivalence relation on frequencies:

f � g ô f � p3{2qng for some n P Z
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How Carlos Chose Divisions

She picked some notes (including the major third) that she
wanted to be well approximated.

She gradually incremented
step sizes and computed (minus) the total squared deviations
between the ideal frequencies and the approximations thereof.
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α, β, and γ Scales

She found the following desirable divisions

step sizes number of pieces
α � 77.995... cents 9
β � 63.814... cents 11
γ � 35.097... cents 20

Let’s listen to the alpha scale (9 notes to a perfect fifth, 15
notes to slightly less than an octave)

The 9� 11 � 20 division of the perfect fifth is in striking analogy
to the 5� 7 � 12 division of the octave.
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20-Tone Equal Temperment (Non-Octave Interval)

1200 � log2p3{2q � 701.955... cents � whole interval
so notes are γ � 35.097... cents apart.



One Perfect Fifth on a γ-Keyboard

We know exactly where the 9 (black keys) and 20 (total keys)
come from.



Combinatorics of 20-Tone Chromatic Scale
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