The Role of Continued Fractions in Rediscovering a Xenharmonic Tuning

Jordan Schettler

University of California, Santa Barbara

10/11/2012

Outline

1 Motivation

2 Physics

3 "Circle" of Fifths

4 Continued Fractions

5 A Tuning of Wendy Carlos

Motivation

Wendy Carlos

■ American composer and Grammy winner

Wendy Carlos

■ American composer and Grammy winner

- Helped to popularize and improve the Moog synthesizer

Wendy Carlos

－American composer and Grammy winner

■ Helped to popularize and improve the Moog synthesizer

■ Used creative and unconventional tunings in original compositions

Carlos' Best Known Works: Soundtracks

Bena the adventures da a yoma man

1971

1980

1982

Carlos' Best Known Works: Albums

1968

1984

1986

An Interesting Tuning

On a standard keyboard or guitar, notes are equally spaced with 100 cents between consecutive notes.

An Interesting Tuning

On a standard keyboard or guitar, notes are equally spaced with 100 cents between consecutive notes.

The Title Track on Beauty in the Beast uses equally spaced notes with α and β cents between consecutive notes where

$$
\begin{aligned}
& \alpha=77.995 \ldots \\
& \beta=63.814 \ldots
\end{aligned}
$$

An Interesting Tuning

On a standard keyboard or guitar, notes are equally spaced with 100 cents between consecutive notes.

The Title Track on Beauty in the Beast uses equally spaced notes with α and β cents between consecutive notes where

$$
\begin{aligned}
\alpha & =77.995 \ldots \\
\beta & =63.814 \ldots \\
(\gamma & =35.097 \ldots)
\end{aligned}
$$

Physics

An Ideal String with Fixed Endpoints (Or Open Pipe)

■ Vibrations \rightsquigarrow periodic compression waves in air (sound).

An Ideal String with Fixed Endpoints (Or Open Pipe)

■ Vibrations \rightsquigarrow periodic compression waves in air (sound).

■ The period T is the number of seconds in one cycle.

An Ideal String with Fixed Endpoints (Or Open Pipe)

■ Vibrations \rightsquigarrow periodic compression waves in air (sound).
\square The period T is the number of seconds in one cycle.

■ The (fundamental) frequency $f=1 / T$ (in $\mathrm{Hz}=1 / \mathrm{sec}$) is the number of cycles per second.

An Ideal String with Fixed Endpoints (Or Open Pipe)

■ Vibrations \rightsquigarrow periodic compression waves in air (sound).
\square The period T is the number of seconds in one cycle.

■ The (fundamental) frequency $f=1 / T$ (in $\mathrm{Hz}=1 / \mathrm{sec}$) is the number of cycles per second.

■ If L is the length of the string, then

$$
f=\frac{v}{2 L}
$$

where v depends only on the density and tension.

Harmonics (Octaves Give Same "Note")

Standing Wave
Frequency

Harmonics（Octaves Give Same＂Note＂）

运追国

Harmonics (Octaves Give Same "Note")

Harmonics (Octaves Give Same "Note")

Frequency

$$
4 f \sim 2 f \sim f
$$

Harmonics (Octaves Give Same "Note")

Harmonics (Octaves Give Same "Note")

Frequency
f
$2 f \sim f$
$3 f$

$$
4 f \sim 2 f \sim f
$$

$5 f$
Likewise, $6 f \sim 3 f$, $8 f \sim f$, $10 f \sim 5 f$, etc.

Timbre

In reality, a string vibrates at multiple harmonics simultaneously.

Timbre

In reality, a string vibrates at multiple harmonics simultaneously. Which harmonics are emphasized and to what extent determines the sound quality.

Timbre

In reality, a string vibrates at multiple harmonics simultaneously. Which harmonics are emphasized and to what extent determines the sound quality.

Waveform	Sound
\bigcirc Snewere ${ }^{\text {a }}$	Link
	Link
	Link

Table: Different instruments playing the same frequency

A Little Functional Analysis

In the Hilbert space $L^{2}([0,2 \pi])$, \exists orthonormal decompositions

$$
h(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

where $\left|c_{n}\right|=\left|\left\langle h(x), e^{i n x}\right\rangle\right|=$ length of the projection onto $e^{i n x}$.

A Little Functional Analysis

In the Hilbert space $L^{2}([0,2 \pi])$, \exists orthonormal decompositions

$$
h(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

where $\left|c_{n}\right|=\left|\left\langle h(x), e^{i n x}\right\rangle\right|=$ length of the projection onto $e^{i n x}$.

If $h(x)$ is real and odd, then Euler's formula implies

$$
h(x)=\sum_{n=1}^{\infty} a_{n} \sin (n x)
$$

where $a_{n}=2 i c_{n} \in \mathbb{R}$ is the amplitude of the nth harmonic.

Example: Sawtooth Wave

Consider the 2π-periodic function $s(x)$ s.t.

$$
s(x)=\frac{\pi-x}{2} \quad \text { on }(0,2 \pi)
$$

Example: Sawtooth Wave

Consider the 2π-periodic function $s(x)$ s.t.

$$
s(x)=\frac{\pi-x}{2} \quad \text { on }(0,2 \pi)
$$

$$
s(x)=\sum_{n=1}^{\infty} \frac{1}{n} \sin (n x)
$$

Fourier series
Graph

Example: Sawtooth Wave

Consider the 2π-periodic function $s(x)$ s.t.

$$
s(x)=\frac{\pi-x}{2} \quad \text { on }(0,2 \pi)
$$

$$
s(x)=\sum_{n=1}^{\infty} \frac{1}{n} \sin (n x)
$$

Fourier series
Graph

Analog synthesizers use sawtooths via subtractive synthesis.

A Famous Identity

The Pythagorean Theorem holds for Hilbert spaces:

$$
\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}=\|h(x)\|^{2}
$$

A Famous Identity

The Pythagorean Theorem holds for Hilbert spaces:

$$
\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}=\|h(x)\|^{2}
$$

If we plug in the sawtooth $s(x)$,

$$
\begin{aligned}
\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}} & =\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}=\|s(x)\|^{2} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{\pi-x}{2}\right)^{2} d x=\frac{\pi^{2}}{12}
\end{aligned}
$$

Back to Frequencies and Notes

We define $A_{2}=110 \mathrm{~Hz}$.

Back to Frequencies and Notes

We define $A_{2}=110 \mathrm{~Hz}$.

The octaves $A_{1}=55 \mathrm{~Hz}, A_{3}=220 \mathrm{~Hz}$, etc., are also A notes.

Back to Frequencies and Notes

We define $A_{2}=110 \mathrm{~Hz}$.

The octaves $A_{1}=55 \mathrm{~Hz}, A_{3}=220 \mathrm{~Hz}$, etc., are also A notes.

There is an equivalence relation on frequencies $f, g \in(0, \infty)$:

$$
f \sim g \Leftrightarrow f=2^{n} g \text { for some } n \in \mathbb{Z}
$$

A Little Algebra

Also, A_{1} and A_{2} are the same "distance" apart as A_{2} and A_{3}.

A Little Algebra

Also, A_{1} and A_{2} are the same "distance" apart as A_{2} and A_{3}.

We have isomorphisms of topological groups:

$$
\frac{(0, \infty)}{\sim} \xrightarrow{\log _{2}(\cdot)} \frac{\mathbb{R}}{\mathbb{Z}} \xrightarrow{\exp (2 \pi i \cdot)} \mathbb{S}^{1} \subseteq \mathbb{C}
$$

frequencies
notes
circle group

A Little Algebra

Also, A_{1} and A_{2} are the same "distance" apart as A_{2} and A_{3}.

We have isomorphisms of topological groups:

$$
\frac{(0, \infty)}{\sim} \xrightarrow{\log _{2}(\cdot)} \frac{\mathbb{R}}{\mathbb{Z}} \xrightarrow{\exp (2 \pi i \cdot)} \mathbb{S}^{1} \subseteq \mathbb{C}
$$

frequencies
notes
circle group

Take unit of frequency $=110 \mathrm{~Hz}$. Then for $n \in \mathbb{Z}$

$$
\left[2^{n}\right] \text { (any A note) } \mapsto n+\mathbb{Z} \mapsto e^{2 \pi i n}=1
$$

A Little Algebra

Also, A_{1} and A_{2} are the same "distance" apart as A_{2} and A_{3}.

We have isomorphisms of topological groups:

$$
\frac{(0, \infty)}{\sim} \xrightarrow{\log _{2}(\cdot)} \frac{\mathbb{R}}{\mathbb{Z}} \xrightarrow{\exp (2 \pi i \cdot)} \mathbb{S}^{1} \subseteq \mathbb{C}
$$

frequencies
notes
circle group

Take unit of frequency $=110 \mathrm{~Hz}$. Then for $n \in \mathbb{Z}$

$$
\left[2^{n}\right] \text { (any A note) } \mapsto n+\mathbb{Z} \mapsto e^{2 \pi i n}=1
$$

In general,

$$
[f] \mapsto \log _{2}(f)+\mathbb{Z} \mapsto e^{2 \pi i \log _{2}(f)}
$$

"Circle" of Fifths

The Perfect Fifth

Every class in $(0, \infty) / \sim$ has a unique representative in $[1,2)$.

The Perfect Fifth

Every class in $(0, \infty) / \sim$ has a unique representative in $[1,2)$. (Every class in \mathbb{R} / \mathbb{Z} has a unique representative in $[0,1)$.)

The Perfect Fifth

Every class in $(0, \infty) / \sim$ has a unique representative in $[1,2)$. (Every class in \mathbb{R} / \mathbb{Z} has a unique representative in $[0,1)$.)
$[1,2)$ spans one octave.

The Perfect Fifth

Every class in $(0, \infty) / \sim$ has a unique representative in $[1,2)$. (Every class in \mathbb{R} / \mathbb{Z} has a unique representative in $[0,1)$.)
$[1,2)$ spans one octave.
\exists only one A note in [1,2), namely $f=1$ (in units 110 Hz).

The Perfect Fifth

Every class in $(0, \infty) / \sim$ has a unique representative in $[1,2)$. (Every class in \mathbb{R} / \mathbb{Z} has a unique representative in $[0,1$).)
$[1,2)$ spans one octave.
\exists only one A note in [1,2), namely $f=1$ (in units 110 Hz).

The third harmonic of $f=1$ gives us a new note [3] $=[3 / 2]$ with $3 / 2 \in[1,2)$.

The Perfect Fifth

Every class in $(0, \infty) / \sim$ has a unique representative in $[1,2)$. (Every class in \mathbb{R} / \mathbb{Z} has a unique representative in $[0,1$).)
$[1,2)$ spans one octave.
\exists only one A note in [1,2), namely $f=1$ (in units 110 Hz).

The third harmonic of $f=1$ gives us a new note [3] $=[3 / 2]$ with $3 / 2 \in[1,2) .\left(\log _{2}(3 / 2) \in[0,1)\right)$

The Perfect Fifth

Every class in $(0, \infty) / \sim$ has a unique representative in [1,2). (Every class in \mathbb{R} / \mathbb{Z} has a unique representative in $[0,1$).)
$[1,2)$ spans one octave.
\exists only one A note in [1,2), namely $f=1$ (in units 110 Hz).

The third harmonic of $f=1$ gives us a new note [3] $=[3 / 2]$ with $3 / 2 \in[1,2) .\left(\log _{2}(3 / 2) \in[0,1)\right)$

The distance (ratio) between $f=1$ and $3 / 2$ is a perfect fifth.

The Perfect Fifth

Every class in $(0, \infty) / \sim$ has a unique representative in [1,2). (Every class in \mathbb{R} / \mathbb{Z} has a unique representative in $[0,1$).)
$[1,2)$ spans one octave.
\exists only one A note in [1,2), namely $f=1$ (in units 110 Hz).

The third harmonic of $f=1$ gives us a new note [3] $=[3 / 2]$ with $3 / 2 \in[1,2) .\left(\log _{2}(3 / 2) \in[0,1)\right)$

The distance (ratio) between $f=1$ and $3 / 2$ is a perfect fifth. It's the most significant interval behind the octave.

The Perfect Fourth, Major Third,

The inverse of [3/2] in the group $(0, \infty) / \sim$ is

$$
[3 / 2]^{-1}=[2 / 3]=[4 / 3]
$$

with $4 / 3 \in(1,2]$ (another new note in the interval).

The Perfect Fourth, Major Third,

The inverse of [3/2] in the group $(0, \infty) / \sim$ is

$$
[3 / 2]^{-1}=[2 / 3]=[4 / 3]
$$

with $4 / 3 \in(1,2]$ (another new note in the interval).
The ratio $4 / 3$ is a perfect fourth.

The Perfect Fourth, Major Third,

The inverse of [3/2] in the group $(0, \infty) / \sim$ is

$$
[3 / 2]^{-1}=[2 / 3]=[4 / 3]
$$

with $4 / 3 \in(1,2]$ (another new note in the interval).
The ratio $4 / 3$ is a perfect fourth.

The fourth harmonic gives nothing new [4] = [1].

The Perfect Fourth, Major Third,

The inverse of [3/2] in the group $(0, \infty) / \sim$ is

$$
[3 / 2]^{-1}=[2 / 3]=[4 / 3]
$$

with $4 / 3 \in(1,2]$ (another new note in the interval).
The ratio $4 / 3$ is a perfect fourth.

The fourth harmonic gives nothing new [4] = [1].

The fifth harmonic gives rise to the major third 5/4.

Stacking Perfect Fifths

The Spiral of Fifths

This process will never end...

The Spiral of Fifths

This process will never end...

The subgroup generated by [3/2] is infinite because

$$
\log _{2}(3 / 2) \notin \mathbb{Q}
$$

The Spiral of Fifths

This process will never end...

The subgroup generated by [3/2] is infinite because

$$
\log _{2}(3 / 2) \notin \mathbb{Q}
$$

\mathbb{Q} is dense \mathbb{R} : we can get arbitrarily good rational approximations a / b to $\log _{2}(3 / 2)$.

The Spiral of Fifths

This process will never end...

The subgroup generated by [3/2] is infinite because

$$
\log _{2}(3 / 2) \notin \mathbb{Q}
$$

\mathbb{Q} is dense \mathbb{R} : we can get arbitrarily good rational approximations a / b to $\log _{2}(3 / 2)$.
$e^{2 \pi i / b}$ will generate a cyclic subgroup in \mathbb{S}^{1} corresponding to a division of the interval (1,2] into b equal pieces.

Let's Stop at $12 \ldots$ Why?

12-Tone Equal Temperment Scale

1200 cents $=$ whole interval, so notes are 100 cents apart. 远围

One Octave on a Standard Keyboard

Where did the 5 (black keys) and 12 (total keys) come from?

One Octave on a Standard Keyboard

Where did the 5 (black keys) and 12 (total keys) come from?
Ideally, we'd want to divide the interval into as few pieces as possible while getting a good approximation to the perfect fifth.

Continued Fractions

Simple Continued Fractions

$\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}\right]:=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots \frac{1}{a_{n}}}}$

通乐

Simple Continued Fractions

$$
\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}\right]:=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots \frac{1}{a_{n}}}}
$$

Theorem
The infinite continued fraction

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots}}:=\lim _{n \rightarrow \infty}\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}\right]
$$

converges if and only if the sum $\sum_{i=0}^{\infty} a_{i}$ diverges.

Unique Expansions

Theorem
Let $\alpha \in \mathbb{R}$. There is a unique ${ }^{\dagger}$ continued fraction expansion

$$
\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]
$$

s.t. $a_{0} \in \mathbb{Z}$ and a_{1}, a_{2}, \ldots are positive integers.

Unique Expansions

Theorem
Let $\alpha \in \mathbb{R}$. There is a unique ${ }^{\dagger}$ continued fraction expansion

$$
\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]
$$

s.t. $a_{0} \in \mathbb{Z}$ and a_{1}, a_{2}, \ldots are positive integers.

Theorem
The continued fraction expansion of $\alpha \in \mathbb{R}$ as above is infinite if and only if α is irrational.

Unique Expansions

Theorem

Let $\alpha \in \mathbb{R}$. There is a unique ${ }^{\dagger}$ continued fraction expansion

$$
\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]
$$

s.t. $a_{0} \in \mathbb{Z}$ and a_{1}, a_{2}, \ldots are positive integers.

Theorem

The continued fraction expansion of $\alpha \in \mathbb{R}$ as above is infinite if and only if α is irrational.

The continued fraction expansion is eventually periodic if and only if α is a quadratic irrational.

Examples of Continued Fraction Expansions

$$
-\frac{13}{5}=[-3 ; 2,2]
$$

Examples of Continued Fraction Expansions

$$
\begin{gathered}
-\frac{13}{5}=[-3 ; 2,2] \\
\sqrt{7}=[2 ; \overline{1,1,1,4}, \ldots]
\end{gathered}
$$

Examples of Continued Fraction Expansions

$$
\begin{gathered}
-\frac{13}{5}=[-3 ; 2,2] \\
\sqrt{7}=[2 ; \overline{1,1,1,4}, \ldots] \\
e=[2 ; 1,2,1,1,4,1,1,6,1,1,8, \ldots]
\end{gathered}
$$

Examples of Continued Fraction Expansions

$$
\begin{gathered}
-\frac{13}{5}=[-3 ; 2,2] \\
\sqrt{7}=[2 ; \overline{1,1,1,4}, \ldots] \\
e=[2 ; 1,2,1,1,4,1,1,6,1,1,8, \ldots]
\end{gathered}
$$

There is no known pattern in the expansion of π.

Examples of Continued Fraction Expansions

$$
\begin{gathered}
-\frac{13}{5}=[-3 ; 2,2] \\
\sqrt{7}=[2 ; \overline{1,1,1,4}, \ldots] \\
e=[2 ; 1,2,1,1,4,1,1,6,1,1,8, \ldots]
\end{gathered}
$$

There is no known pattern in the expansion of π ．

We don＇t even know whether or not the terms in the expansion of $\sqrt[3]{2}$ are bounded．

Convergents

Definition

The nth convergent of $\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ is

$$
\frac{p_{n}}{q_{n}}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}\right]
$$

with p_{n}, q_{n} relatively prime integers $\left(q_{n}>0\right)$.

Convergents

Definition

The nth convergent of $\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ is

$$
\frac{p_{n}}{q_{n}}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}\right]
$$

with p_{n}, q_{n} relatively prime integers $\left(q_{n}>0\right)$.

Theorem

Suppose $\alpha \notin \mathbb{Q}$. Then the convergents p_{n} / q_{n} are best approximations (and vice versa) in the following sense:

If $a / b \in \mathbb{Q}$ is written is lowest terms and $b<q_{n}$, then

$$
|b \alpha-a|>\left|q_{n} \alpha-p_{n}\right|
$$

Combinatorics of 12-Tone Chromatic Scale

$$
\log _{2}(3 / 2)=\frac{1}{1+\frac{1}{1+\frac{1}{2+\frac{1}{2+\frac{1}{3+\cdots}}}}}
$$

Combinatorics of 12-Tone Chromatic Scale

$$
\log _{2}(3 / 2)=\frac{1}{1+\frac{1}{1+\frac{1}{2+\frac{1}{2+\frac{1}{3+\cdots}}}}}
$$

$$
\frac{1}{2}<\frac{7}{12}<\frac{31}{53}<\ldots<\log _{2}(3 / 2)<\ldots<\frac{24}{41}<\frac{3}{5}<1
$$

Combinatorics of 12-Tone Chromatic Scale

$$
\log _{2}(5 / 4)=\frac{1}{3+\frac{1}{9+\frac{1}{2+\frac{1}{2+\cdots}}}}
$$

Combinatorics of 12-Tone Chromatic Scale

$$
\begin{gathered}
\log _{2}(5 / 4)=\frac{1}{3+\frac{1}{9+\frac{1}{2+\frac{1}{2+\cdots}}}} \\
\frac{9}{28}<\frac{47}{146}<\ldots<\log _{2}(5 / 4)<\ldots<\frac{19}{59}<\frac{1}{3}
\end{gathered}
$$

Combinatorics of 12-Tone Chromatic Scale

$$
\log _{2}(5 / 4)=\frac{1}{3+\frac{1}{9+\frac{1}{2+\frac{1}{2+\cdots}}}}
$$

$$
\frac{9}{28}<\frac{47}{146}<\ldots<\log _{2}(5 / 4)<\ldots<\frac{19}{59}<\frac{1}{3}
$$

$2^{7 / 12} \approx 3 / 2$ is good, but $2^{4 / 12} \stackrel{?}{\approx} 5 / 4$ is not as good.

A Tuning of Wendy Carlos

Xenharmonic Tunings

Why do we have to start with an octave interval?

Xenharmonic Tunings

Why do we have to start with an octave interval?

Wendy Carlos started with the interval [1,3/2) (perfect fifth), and the divided this into equal pieces.

Xenharmonic Tunings

Why do we have to start with an octave interval?

Wendy Carlos started with the interval [1,3/2) (perfect fifth), and the divided this into equal pieces.

We get a new equivalence relation on frequencies:

$$
f \sim g \Leftrightarrow f=(3 / 2)^{n} g \quad \text { for some } n \in \mathbb{Z}
$$

How Carlos Chose Divisions

She picked some notes (including the major third) that she wanted to be well approximated.

How Carlos Chose Divisions

She picked some notes (including the major third) that she wanted to be well approximated. She gradually incremented step sizes and computed (minus) the total squared deviations between the ideal frequencies and the approximations thereof.

How Carlos Chose Divisions

She picked some notes (including the major third) that she wanted to be well approximated. She gradually incremented step sizes and computed (minus) the total squared deviations between the ideal frequencies and the approximations thereof.

α, β, and γ Scales

She found the following desirable divisions

step sizes	number of pieces
$\alpha=77.995 \ldots$ cents	9
$\beta=63.814 \ldots$ cents	11
$\gamma=35.097 \ldots$ cents	20

α, β, and γ Scales

She found the following desirable divisions

step sizes	number of pieces
$\alpha=77.995 \ldots$ cents	9
$\beta=63.814 \ldots$ cents	11
$\gamma=35.097 \ldots$ cents	20

Let's listen to the alpha scale (9 notes to a perfect fifth, 15 notes to slightly less than an octave)

α, β, and γ Scales

She found the following desirable divisions

step sizes	number of pieces
$\alpha=77.995 \ldots$ cents	9
$\beta=63.814 \ldots$ cents	11
$\gamma=35.097 \ldots$ cents	20

Let's listen to the alpha scale (9 notes to a perfect fifth, 15 notes to slightly less than an octave)

The $9+11=20$ division of the perfect fifth is in striking analogy to the $5+7=12$ division of the octave.

Stacking Major Thirds (in a Perfect Fifth)

20-Tone Equal Temperment (Non-Octave Interval)

$1200 \cdot \log _{2}(3 / 2)=701.955 \ldots$ cents $=$ whole interval so notes are $\gamma=35.097 \ldots$ cents apart.

One Perfect Fifth on a γ-Keyboard

We know exactly where the 9 (black keys) and 20 (total keys) come from.

Combinatorics of 20-Tone Chromatic Scale

$$
\log _{3 / 2}(5 / 4)=\frac{1}{1+\frac{1}{1+\frac{1}{4+\frac{1}{2+\frac{1}{6+\cdots}}}}}
$$

Combinatorics of 20－Tone Chromatic Scale

$$
\log _{3 / 2}(5 / 4)=\frac{1}{1+\frac{1}{1+\frac{1}{4+\frac{1}{2+\frac{1}{6+\cdots}}}}}
$$

$$
\frac{1}{2}<\frac{11}{20}<\frac{82}{149}<\ldots<\log _{3 / 2}(5 / 4)<\ldots<\frac{71}{129}<\frac{5}{9}<1
$$

