> 5.1.2 Find the eigenvalue of $\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & 3\end{array}\right]$. Find a basis for each of the corresponding eigenspaces.
5.1.22b If \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent eigenvectors, do they necessarily correspond to distinct eigenvalues?
5.1.26 Show that if A^{2} is the zero matrix, then the only eigenvalue of A is 0 .
5.3.9 If possible, diagonalize the matrix

$$
\left[\begin{array}{cc}
2 & -1 \\
1 & 4
\end{array}\right]
$$

If not possible, explain why it cannot be done.
5.3.25 A is a 4×4 matrix with three eigenvalues. One eigenspace is one-dimensional, and one of the other eigenspaces is two dimensional. Is it possible that A is not diagonalizable? Justify your answer.
5.3.31-32 Construct (1) a nonzero 2×2 matrix that is invertable but not diagonalizable, and (2) a nondiagonal 2×2 matrix that is diagonalizable but not invertable.

You saw that the eigenvalues of a matrix A are the roots of the polynomial $\operatorname{det}(A-\lambda I)$. You have also seen that the rotation matrix $R=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ has no real eigenvalues. What happens if you try to use the above formula to compute them? What do you make of this? Bonus: Must a 3×3 real matrix always have a real eigenvalue? What does this tell you about rotations in three dimensional space?

