Worksheet 9

5.1.2	Find the eigenvalue of	$\begin{bmatrix} 2\\0\\0 \end{bmatrix}$	0 0 -2	0 1 3	. Find a basis for each of the corresponding
eigenspaces.					

5.1.22b If \mathbf{v}_1 and \mathbf{v}_2 are linearly independent eigenvectors, do they necessarily correspond to distinct eigenvalues?

5.1.26 Show that if A^2 is the zero matrix, then the only eigenvalue of A is 0.

5.3.9 If possible, diagonalize the matrix

$$\begin{bmatrix} 2 & -1 \\ 1 & 4 \end{bmatrix}.$$

If not possible, explain why it cannot be done.

5.3.25 *A* is a 4×4 matrix with three eigenvalues. One eigenspace is one-dimensional, and one of the other eigenspaces is two dimensional. Is it possible that *A* is not diagonalizable? Justify your answer.

5.3.31-32 Construct (1) a nonzero 2×2 matrix that is invertable but not diagonalizable, and (2) a nondiagonal 2×2 matrix that is diagonalizable but not invertable.

You saw that the eigenvalues of a matrix A are the roots of the polynomial det $(A - \lambda I)$. You have also seen that the rotation matrix $R = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ has no real eigenvalues. What happens if you try to use the above formula to compute them? What do you make of this? Bonus: Must a 3 × 3 real matrix always have a real eigenvalue? What does this tell you about rotations in three dimensional space?