Worksheet 8

4.5.12, 4.6.1, 5.1.2, 5.1.12, 5.1.21b, 5.1.22b, 5.1.26
4.5.12 Find the dimension of the subspace spanned by the vectors:

$$
\left[\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
-6 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
3 \\
5
\end{array}\right],\left[\begin{array}{c}
-3 \\
5 \\
5
\end{array}\right] .
$$

4.6.1 The matrix

$$
A=\left[\begin{array}{cccc}
1 & -4 & 9 & -7 \\
-1 & 2 & -4 & 1 \\
5 & -6 & 10 & 7
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -1 & 5 \\
0 & 1 & -\frac{5}{2} & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

What are rank A and $\operatorname{dim} \operatorname{Nul} A$? Find bases for $\operatorname{Col} A$ and $\operatorname{Nul} A$.
Is

$$
T\left(a t^{3}+b t^{2}+c t+d\right)=(a-c+5 d) t^{2}+(-2 b+5 c-6 d)
$$

a linear transformation? If so, find a basis for its kernel.
Write down a clear and correct definition of the kernel and the range of linear transformation.
Draw a figure illustrating the relationship between the kernel and range, and explain it to somebody near you. (This is deliberately open-ended).

4.7.1

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ be bases for a vector space V, and suppose $\mathbf{b}_{1}=$ $6 \mathbf{c}_{1}-2 \mathbf{c}_{2}$ and $\mathbf{b}_{2}=9 \mathbf{c}_{1}-4 \mathbf{c}_{2}$.
a. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}.
b. Find $[\mathbf{x}]_{\mathcal{C}}$ for $\mathbf{x}=-3 \mathbf{b}_{1}+2 \mathbf{b}_{2}$. Use part (a).
c. Find the change-of-coordinates matrix from \mathcal{C} to \mathcal{B}.

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}, \mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$, and $\mathcal{D}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}\right\}$ be bases for a two dimensional vector space. Write an equation that relates the change of basis matrices $\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B}, \mathcal{D} \stackrel{P}{\leftarrow} \mathcal{C}$, and $\mathcal{D} \stackrel{P}{\leftarrow} \mathcal{B}$. Justify your result.

