Worksheet 7

4.3.9 Find bases for the null space and column space of the matrix

$$
\left[\begin{array}{cccc}
1 & 0 & -2 & -2 \\
0 & 1 & 1 & 4 \\
3 & -1 & -7 & 3
\end{array}\right] .
$$

What are their dimensions, and what spaces do they live in? (I.e. the null space is a m-dimensional subspace of \mathbb{R}^{n}, for what m and n ?).
4.3.25 Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and let H be the set of vectors in \mathbb{R}^{3} whose second and third entries are equal. Then every vector in H has a unique expression as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, because

$$
\left[\begin{array}{l}
s \\
t \\
t
\end{array}\right]=s\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+(t-s)\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+s\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

for any s and t. Is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ a basis for H ? Why or why not?
a For each of the following sets of polynomials, do they form a basis for \mathbb{P}_{2} ? Justify your answer. If possible, write the polynomial $1+t+t^{2}$ in terms of each basis.
(a) $S=\left\{1+t^{2}, 1-t^{2}\right\}$
(b) $S=\{t, 2 t-1, t+3\}$
(c) $S=\left\{t, 2 t-1, t^{2}+t+1\right\}$
(d) $S=\left\{2 t^{2}+5 t-1,-t^{2}-3 t+1,-t+1\right\}$
b Let A and B be matrices. If $\operatorname{Col} A \subseteq \operatorname{Nul} B$ (\subseteq means "is a subset of"), what is Nul $B A$?
c Suppose you have a basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ of \mathbb{R}^{3}, and suppose $\mathbf{w}=a \mathbf{v}_{1}+b \mathbf{v}_{2}+c \mathbf{v}_{3}$. If you know a, b, c, how can you obtain \mathbf{w} ? If you know \mathbf{w}, how can you obtain a, b, c ? (Try to view this as a matrix multiplication).
d Suppose there is a 2×3 matrix C such that

$$
C\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right]=e_{1} \quad C\left[\begin{array}{l}
3 \\
0 \\
2
\end{array}\right]=e_{2} .
$$

Find a 3×2 matrix D such that $C D=I_{2}$. Is D unique? If you know

$$
\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

is in the null-space of C, can you find two different matrices D which suffice?

