Worksheet 6

1, Lay: 1.9.13, 2.2.16, 3.1.9,3.2.5,3.2.32,3.2.35

1.9.13 Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation such that $T(\mathbf{e}_1)$ and $T(\mathbf{e}_2)$ are the vectors shown in the figure. Using the figure, sketch the vector T(2, 1).

2.2.16 Suppose *A* and *B* are $n \times n$ matrices, *B* is invertable, and *AB* is invertable. Show *A* is invertable. [Hint: Let C = AB, and solve this equation for *A*].

3.1.9	Compute by cofactor expansion the determinant of					
		6	0	0	5	
		1	7	2	-5	
		2	0	0	0	·
		8	3	1	8	
						I

3.2.5 Find by row reduction the determinant of

$$\begin{vmatrix} 1 & 5 & -6 \\ -1 & -4 & 4 \\ -2 & -7 & 9 \end{vmatrix}.$$

In other words, reduce this matrix to row echelon form and use the properties of how determinants transform under row operations.

3.2.32 Find a formula for det(rA) where A is an $n \times n$ matrix.

3.2.35 Let *U* be a square matrix such that $U^T U = I$. Show that $\det U = \pm 1$.

Suppose	
	$A = \begin{bmatrix} 2 & 1 \\ -2 & 1 \end{bmatrix}$
and	
	$B = \begin{bmatrix} 6 & 1 \\ 2 & 2 \end{bmatrix}.$
Find	
	$\det A^2 B^7 A^{-1}.$