Lay 2.1.4, 2.1.7, 2.1.12, 2.1.23, 2.2.1, 2.2.5, 2.2.18, 2.2.24
2.1.4 Compute $A-5 I_{3}$ and $\left(5 I_{3}\right) A$, where

$$
A=\left[\begin{array}{ccc}
5 & -1 & 3 \\
-4 & 3 & -6 \\
-3 & 1 & 2
\end{array}\right]
$$

2.1.7 If a matrix is 5×3 and the product $A B$ is 5×7, what is the size of B ?
2.2.18 Solve the equation $A B=B C$ for A assuming that A, B, and C are square and B is invertible.
2.1.12 Let $A=\left[\begin{array}{cc}3 & -6 \\ -2 & 4\end{array}\right]$. Construct a 2×2 matrix B such that $A B$ is the zero matrix. Use two different nonzero columns for B.
2.1.23 Suppose $C A=I_{n}$ (the $n \times n$ identity matrix). Show that the equation $A x=0$ has only the trivial solution. Explain why A cannot have more columns than rows.
2.2.1 Find the inverse of the matrix

$$
\left[\begin{array}{ll}
8 & 6 \\
5 & 4
\end{array}\right]
$$

2.2.5 Use the inverse found in Exercise 1 to solve the system

$$
\begin{gathered}
8 x_{1}+6 x_{2}=2 \\
5 x_{1}+4 x_{2}=-1
\end{gathered}
$$

Let A and B be $n \times n$ invertible matrices. is it true that $(A+B)(A-B)=A^{2}-B^{2}$? Why or why not?
2.2.19 Solve the equation $C^{-1}(A+X) B^{-1}=I_{n}$ for X assuming A, B, C are all $n \times n$
2.2.24 Suppose A is $n \times n$ and the equation $A \mathbf{x}=\mathbf{b}$ has a solution for each $b \in \mathbb{R}^{n}$. Explain why A must be invertible. [Hint: Is A row equivalent to I_{n} ?]

You've seen the properties one-to-one and onto defined for linear transformations. However, we can also define them for any function, linear or not. Recall that a function $f: U \rightarrow V$ is onto if for every $v \in V$, we can find at least one $u \in U$ such that $f(u)=v$, and that f is one-to-one for every $v \in V$ we can find at most one $u \in U$ such that $f(u)=v$.
Find ordinary, real valued functions (not necessarily linear) which are both one-to-one and onto, one-to-one but not onto, onto but not one-to-one, and neither onto nor one-toone. Which of these are linear transformations? Is it possible to find a linear transformation from \mathbb{R} to \mathbb{R} of each type? Why or why not?

