Worksheet 5

Lay 2.1.4, 2.1.7, 2.1.12, 2.1.23, 2.2.1, 2.2.5, 2.2.18, 2.2.24

2.1.4 Compute $A - 5I_3$ and $(5I_3)A$, where

$$A = \begin{bmatrix} 5 & -1 & 3 \\ -4 & 3 & -6 \\ -3 & 1 & 2 \end{bmatrix}$$

2.1.7 If a matrix is 5×3 and the product *AB* is 5×7 , what is the size of *B*?

2.2.18 Solve the equation AB = BC for *A* assuming that *A*, *B*, and *C* are square and *B* is invertible.

2.1.12 Let $A = \begin{bmatrix} 3 & -6 \\ -2 & 4 \end{bmatrix}$. Construct a 2 × 2 matrix *B* such that *AB* is the zero matrix. Use two different nonzero columns for *B*.

2.1.23 Suppose $CA = I_n$ (the $n \times n$ identity matrix). Show that the equation Ax = 0 has only the trivial solution. Explain why A cannot have more columns than rows.

2.2.1 Find the inverse of the matrix

 $\left[\begin{array}{rrr} 8 & 6 \\ 5 & 4 \end{array}\right]$

2.2.5 Use the inverse found in Exercise 1 to solve the system

$$8x_1 + 6x_2 = 2 5x_1 + 4x_2 = -1$$

Let *A* and *B* be $n \times n$ invertible matrices. is it true that $(A + B)(A - B) = A^2 - B^2$? Why or why not?

2.2.19 Solve the equation $C^{-1}(A + X)B^{-1} = I_n$ for X assuming A, B, C are all $n \times n$

2.2.24 Suppose *A* is $n \times n$ and the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each $b \in \mathbb{R}^n$. Explain why *A* must be invertible. [Hint: Is *A* row equivalent to I_n ?]

You've seen the properties *one-to-one* and *onto* defined for linear transformations. However, we can also define them for any function, linear or not. Recall that a function $f : U \to V$ is onto if for every $v \in V$, we can find *at least* one $u \in U$ such that f(u) = v, and that f is one-to-one for every $v \in V$ we can find *at most* one $u \in U$ such that f(u) = v.

Find ordinary, real valued functions (not necessarily linear) which are both one-to-one and onto, one-to-one but not onto, onto but not one-to-one, and neither onto nor one-to-one. Which of these are linear transformations? Is it possible to find a linear transformation from \mathbb{R} to \mathbb{R} of each type? Why or why not?