1.8.2 Let $A=\left[\begin{array}{ccc}\frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3}\end{array}\right], \mathbf{u}=\left[\begin{array}{c}3 \\ 6 \\ -9\end{array}\right], \mathbf{v}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$. Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=$ $A \mathbf{x}$. Find $T(\mathbf{u})$ and $T(\mathbf{v})$.
1.8.19 Let $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathbf{y}_{1}=\left[\begin{array}{l}2 \\ 5\end{array}\right]$, and $\mathbf{y}_{2}=\left[\begin{array}{c}-1 \\ 6\end{array}\right]$, and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps \mathbf{e}_{1} into \mathbf{y}_{1} and \mathbf{e}_{2} into \mathbf{y}_{2}. Find the images of $\left[\begin{array}{c}5 \\ -3\end{array}\right]$ and $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
Incidentally, this use of \mathbf{e}_{i} to indicate the vector with a 1 in the $i^{\text {th }}$ position and 0 's in every other position is standard.
1.8.31 Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be a linearly dependent set in \mathbb{R}^{n}. Explain why the set $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is linearly dependent.

Find the standard matrix of the transformation which projects \mathbb{R}^{3} onto the $x y$ axis.
1.9.1 Find the standard matrix of T if $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}, T\left(\mathbf{e}_{1}\right)=(3,1,3,1)$ and $T\left(\mathbf{e}_{2}\right)=$ $(-5,2,0,0)$, where $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$.

Suppose T is a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{4}.
Can T be onto? If so, must it be onto?
Can T be one-to-one? If so, must it be one to one?
1.9.8 $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first performs a horizontal shear that transforms \mathbf{e}_{2} into $\mathbf{e}_{2}+2 \mathbf{e}_{1}$ (leaving \mathbf{e}_{1} unchanged) and then reflects points through the line $x_{2}=-x_{1}$. Find the standard matrix of T.

