Worksheet 4

1.8.2 Let
$$A = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 3 \\ 6 \\ -9 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$. Define $T : \mathbb{R}^3 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$. Find $T(\mathbf{u})$ and $T(\mathbf{v})$.

1.8.19 Let $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, and $\mathbf{y}_2 = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{e}_1 into \mathbf{y}_1 and \mathbf{e}_2 into \mathbf{y}_2 . Find the images of $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. *Incidentally, this use of* \mathbf{e}_i *to indicate the vector with a* 1 *in the i*th *position and* 0's *in every other position is standard.*

1.8.31 Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a linearly dependent set in \mathbb{R}^n . Explain why the set $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ is linearly dependent.

Find the standard matrix of the transformation which projects \mathbb{R}^3 onto the *xy* axis.

1.9.1 Find the standard matrix of T if $T : \mathbb{R}^2 \to \mathbb{R}^4$, $T(\mathbf{e}_1) = (3, 1, 3, 1)$ and $T(\mathbf{e}_2) = (-5, 2, 0, 0)$, where $\mathbf{e}_1 = (1, 0)$ and $\mathbf{e}_2 = (0, 1)$.

Suppose *T* is a linear transformation from \mathbb{R}^2 to \mathbb{R}^4 . Can *T* be *onto*? If so, must it be onto? Can *T* be *one-to-one*? If so, must it be one to one?

1.9.8 $T : \mathbb{R}^2 \to \mathbb{R}^2$ first performs a horizontal shear that transforms \mathbf{e}_2 into $\mathbf{e}_2 + 2\mathbf{e}_1$ (leaving \mathbf{e}_1 unchanged) and then reflects points through the line $x_2 = -x_1$. Find the standard matrix of *T*.