1.4.13 Let $u=\left[\begin{array}{l}0 \\ 4 \\ 4\end{array}\right]$ and $A=\left[\begin{array}{cc}3 & -5 \\ -2 & 6 \\ 1 & 1\end{array}\right]$. Is u in the plane in \mathbb{R}^{3} spanned by the columns of A ?
1.5.6 Provide a vector description of the set of all solutions to

$$
\begin{aligned}
x_{1}+2 x_{2}-3 x_{3} & =0 \\
2 x_{1}+x_{2}-3 x_{3} & =0 \\
-x_{1}+x_{2} & =0
\end{aligned}
$$

1.5.33 Construct a 3×3 nonzero matrix A such that the vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is a solution of $A \mathbf{x}=\mathbf{0}$.
1.7.10 Let $\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ -3 \\ -5\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-3 \\ 9 \\ 15\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}2 \\ -5 \\ h\end{array}\right]$ For what values of h is \mathbf{v}_{3} in Span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, and for what values of h is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ linearly dependent? Justify each answer.
1.5.36 Given $A=\left[\begin{array}{cc}3 & -2 \\ -6 & 4 \\ 12 & -8\end{array}\right]$, find one nontrivial solution of $A \mathbf{x}=\mathbf{0}$ by inspection.
1.5.28,1.5.30 For each part, determine if $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution, and also determine if $A \mathbf{x}=\mathbf{b}$ has at least one solution for every possible \mathbf{b}.

- If A is a 3×3 matrix with three pivot positions?
- If A is a 2×5 matrix with two pivot positions?

Can you find numbers m, n, and k such that any $m \times n$ matrix A with k pivot positions such that the system $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions, yet $A \mathbf{x}=\mathbf{b}$ does not necessarily have a solution for every possible \mathbf{b} ?

