Worksheet 3

1.4.13 Let $u =$	$\begin{bmatrix} 0 \\ 4 \\ 4 \end{bmatrix}$	and $A =$	$\begin{bmatrix} 3\\ -2\\ 1 \end{bmatrix}$	-5^{-6}	. Is u in the plane in \mathbb{R}^3 spanned by the
columns of <i>A</i> ?			-	-	

1.5.6 Provide a vector description of the set of all solutions to

 $x_1 + 2x_2 - 3x_3 = 0$ $2x_1 + x_2 - 3x_3 = 0$ $-x_1 + x_2 = 0$

1.5.33	Construct a 3x3 nonzero matrix A such that the vector	$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$	is a solution of
$A\mathbf{x} = 0$	0.		

1.7.10 Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -3 \\ -5 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -3 \\ 9 \\ 15 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 2 \\ -5 \\ h \end{bmatrix}$ For what values of *h* is \mathbf{v}_3 in Span{ $\mathbf{v}_1, \mathbf{v}_2$ }, and for what values of *h* is { $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ } linearly dependent? Justify each answer.

1.5.36 Given <i>A</i> =	$\begin{bmatrix} 3\\ -6\\ 12 \end{bmatrix}$	$ \begin{array}{c} -2 \\ 4 \\ -8 \end{array} $, find one nontrivial solution of $A\mathbf{x} = 0$ by inspection.
--------------------------------	---	--	--

1.5.28,1.5.30 For each part, determine if $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution, and also determine if $A\mathbf{x} = \mathbf{b}$ has at least one solution for every possible **b**.

- If *A* is a 3x3 matrix with three pivot positions?
- If *A* is a 2x5 matrix with two pivot positions?

Can you find numbers *m*, *n*, and *k* such that any $m \times n$ matrix *A* with *k* pivot positions such that the system $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions, yet $A\mathbf{x} = \mathbf{b}$ does not necessarily have a solution for every possible **b**?