Worksheet 2
Find the solution set of the system corresponding to

$$
\left[\begin{array}{ccc|c}
0 & 1 & 2 & 5 \\
0 & -1 & 3 & 25
\end{array}\right]
$$

in the form

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=[]+s[]
$$

Does the augmented matrix

$$
\left[\begin{array}{ccc|c}
1 & 2 & -1 & 3 \\
0 & 1 & 1 & 2 \\
1 & 3 & 0 & 4
\end{array}\right]
$$

have zero, one, or infinitely many solutions?
1.3.12 Determine if \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} :

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{c}
-2 \\
3 \\
-2
\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{c}
-6 \\
7 \\
5
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
11 \\
-5 \\
9
\end{array}\right]
$$

1.3.22 Construct a 3×3 matrix A, with nonzero entries, and a vector \mathbf{b} in \mathbb{R}^{3} such that \mathbf{b} is not in the set spanned by the columns of A.
1.4.15 Let $A=\left[\begin{array}{cc}3 & -1 \\ -9 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$. Show that the equation $A \mathbf{x}=\mathbf{b}$ does not have a solution for all possible \mathbf{b}, and describe the set of \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ does have a solution.
1.4.26 Let $\mathbf{u}=\left[\begin{array}{l}7 \\ 2 \\ 5\end{array}\right], \mathbf{v}=\left[\begin{array}{l}3 \\ 1 \\ 3\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{l}5 \\ 1 \\ 1\end{array}\right]$. It can be shown that $2 \mathbf{u}-3 \mathbf{v}-\mathbf{w}=$ 0. Use this fact (and no row operations) to find x_{1} and x_{2} that satisfy the equation

$$
\left[\begin{array}{ll}
7 & 3 \\
2 & 1 \\
5 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
5 \\
1 \\
1
\end{array}\right]
$$

1.4.32 Could a set of 3 vectors in \mathbb{R}^{4} span all of \mathbb{R}^{4} ? Explain. What about n vectors in \mathbb{R}^{m} where n is less than m ?

In

$$
A=\left[\begin{array}{ccc}
4 & 1 & 5 \\
-5 & 3 & -2 \\
-2 & -1 & -3 \\
1 & 0 & 1
\end{array}\right]
$$

note that one column is the sum of the other two. Find three different solutions to $A \mathbf{x}=$ 0. Note that you do not need to use row operations for this problem. See 1.4.26 for inspiration.

