Worksheet 10

6.1.9 Find the unit vector in the direction of the vector $\mathbf{u} =$	$\begin{bmatrix} -30\\ 40 \end{bmatrix}$. Also find a basis for
the set of vectors v orthogonal to u .	

6.1.19c True or false: If the distance from **u** to **v** equals the distance from **u** to $-\mathbf{v}$, then **u** and **v** are orthogonal. Justify.

Consider $\mathbf{v} = \begin{bmatrix} 7\\ 2 \end{bmatrix}, \quad \mathbf{u}_1 = \begin{bmatrix} 1\\ -1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 2\\ 2 \end{bmatrix}.$

Note that \mathbf{u}_1 and \mathbf{u}_2 are orthogonal. For each \mathbf{u}_i , compute $\frac{\mathbf{u}_i \cdot \mathbf{v}}{\mathbf{u}_i \cdot \mathbf{u}_i}$ Also find v as a linear combination of \mathbf{u}_1 , \mathbf{u}_2 .