6.1.9 Find the unit vector in the direction of the vector $\mathbf{u}=\left[\begin{array}{c}-30 \\ 40\end{array}\right]$. Also find a basis for
the set of vectors \mathbf{v} orthogonal to \mathbf{u}.
6.1.19c True or false: If the distance from \mathbf{u} to \mathbf{v} equals the distance from \mathbf{u} to $-\mathbf{v}$, then \mathbf{u} and \mathbf{v} are orthogonal. Justify.

Consider

$$
\mathbf{v}=\left[\begin{array}{l}
7 \\
2
\end{array}\right], \quad \mathbf{u}_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{l}
2 \\
2
\end{array}\right] .
$$

Note that \mathbf{u}_{1} and \mathbf{u}_{2} are orthogonal. For each \mathbf{u}_{i}, compute $\frac{\mathbf{u}_{i} \cdot \mathbf{v}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}}$ Also find v as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}$.

