Name:
Tardis:

Quiz 7

Is the set

$$
\left\{\left[\begin{array}{c}
c-6 d \\
d \\
c
\end{array}\right]: c \text { and } d \text { are real numbers }\right\}
$$

a vector space?
Yes. Here are two solutions:
This is the span of two vectors: $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-6 \\ 1 \\ 0\end{array}\right]$. The span of a set of vectors is always a vector space. (4.1 Theorem 1).
Or:
This set is a subset of \mathbb{R}^{3}. So we only need to check that it has a 0 vector and is closed under addition and scalar multiplication.
[0]
0 is in our set (take $c=d=0$).
It is closed under addition:

$$
\left[\begin{array}{c}
c_{1}-6 d_{1} \\
d_{1} \\
c_{1}
\end{array}\right]+\left[\begin{array}{c}
c_{2}-6 d_{2} \\
d_{2} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
\left(c_{1}+c_{2}\right)-6\left(d_{1}+d_{2}\right) \\
d_{1}+d_{2} \\
c_{1}+c_{2}
\end{array}\right] .
$$

And it is closed under scalar multiplication:

$$
a\left[\begin{array}{c}
c-6 d \\
d \\
c
\end{array}\right]=\left[\begin{array}{c}
a c-6 a d \\
a d \\
a c
\end{array}\right]
$$

