Name: Tardis:

Quiz 5

Compute both the inverse and the determinant of the matrix

$$A = \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix}.$$

The determinant of a 2×2 matrix

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

is simply ad - bc. This gives us

$$\det A = 1 * 2 - 0 * 3 = 2.$$

The inverse of such a 2×2 matrix is given by

$$\frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$
 (1)

This gives us

$$A^{-1} = \frac{1}{2} \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix}$$

You should memorize (1). However, if you forgot it, you could also compute the inverse by combining A with I_2 to form a "super-augmented" matrix and row-reducing until the left half was the identity. The right half would then be the inverse of A. I.e.

1	3		1	0]		[1	3	1	0]
0	2	Í	0	1	\sim	0	1	0	$\left[\frac{1}{2}\right]$
		~ /	[1	0		1	$-\frac{3}{2}$		
	,	, 0	0	1		0	$\frac{1}{2}$		

and thus

$$A^{-1} = \begin{bmatrix} 1 & -\frac{3}{2} \\ 0 & \frac{1}{2} \end{bmatrix},$$

exactly as we obtained with (1).