Name:
Tardis:

Quiz 5

Compute both the inverse and the determinant of the matrix

$$
A=\left[\begin{array}{ll}
1 & 3 \\
0 & 2
\end{array}\right]
$$

The determinant of a 2×2 matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is simply $a d-b c$. This gives us

$$
\operatorname{det} A=1 * 2-0 * 3=2
$$

The inverse of such a 2×2 matrix is given by

$$
\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \tag{1}\\
-c & a
\end{array}\right]
$$

This gives us

$$
A^{-1}=\frac{1}{2}\left[\begin{array}{cc}
2 & -3 \\
0 & 1
\end{array}\right]
$$

You should memorize (1). However, if you forgot it, you could also compute the inverse by combining A with I_{2} to form a "super-augmented" matrix and row-reducing until the left half was the identity. The right half would then be the inverse of A. I.e.

$$
\begin{aligned}
{\left[\begin{array}{ll|ll}
1 & 3 & 1 & 0 \\
0 & 2 & 0 & 1
\end{array}\right] } & \sim\left[\begin{array}{ll|ll}
1 & 3 & 1 & 0 \\
0 & 1 & 0 & \frac{1}{2}
\end{array}\right] \\
& \sim\left[\begin{array}{ll|ll}
1 & 0 & 1 & -\frac{3}{2} \\
0 & 1 & 0 & \frac{1}{2}
\end{array}\right]
\end{aligned}
$$

and thus

$$
A^{-1}=\left[\begin{array}{cc}
1 & -\frac{3}{2} \\
0 & \frac{1}{2}
\end{array}\right]
$$

exactly as we obtained with (1).

