Name:
Tardis:

## Quiz 4

Are the three vectors

$$
\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
6
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
7
\end{array}\right]
$$

linearly dependent? Why or why not?
We wish to see if the system corresponding to

$$
\left[\begin{array}{ccc|c}
1 & 3 & 3 & 0 \\
-1 & 0 & 1 & 0 \\
1 & 6 & 7 & 0
\end{array}\right]
$$

has nontrivial solutions. Let us add Row 1 to Row 2 and subtract Row 1 from Row 3. We obtain

$$
\left[\begin{array}{lll|l}
1 & 3 & 3 & 0 \\
0 & 3 & 4 & 0 \\
0 & 3 & 4 & 0
\end{array}\right] .
$$

Then subtracting Row 2 from Row 3,

$$
\left[\begin{array}{lll|l}
1 & 3 & 3 & 0 \\
0 & 3 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Observe that this system is consistent and has a free variable, $x_{3}$, and therefore this system has nontrivial solutions. Thus the set of three vectors is linearly dependent.

Alternatively, we might have observed that

$$
\left[\begin{array}{l}
3 \\
0 \\
6
\end{array}\right]=\frac{3}{4}\left(\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{l}
3 \\
1 \\
7
\end{array}\right]\right)
$$

and thus the three vectors are linearly dependent. However, such an insight requires inspiration and may not always be obvious.

