Name:

Let

$$A = \begin{bmatrix} 0 & 0 & 4 \\ 0 & -3 & -2 \\ -3 & 9 & -6 \end{bmatrix}$$

Do the columns of *A* span \mathbb{R}^3 ? (\mathbb{R}^3 is the set of all vectors with 3 components). You do not need to do much computation, so justify your answer clearly and thoroughly. *Hint: Recall that the columns of a* $n \times m$ *matrix A span* \mathbb{R}^n *if and only if for every vector* **b** *in* \mathbb{R}^n , *the equation* $A\mathbf{x} = \mathbf{b}$ *is consistent.*

Let us make use of the hint (aka Theorem 4, Ch 1.4). Let us see that $A\mathbf{x} = \mathbf{b}$ is consistent, not matter what we choose for **b**.

Choose **b** to be the vector

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Then the system $A\mathbf{x} = \mathbf{b}$ corresponds to the matrix

$$\begin{bmatrix} 0 & 0 & 4 & | & b_1 \\ 0 & -3 & -2 & | & b_2 \\ -3 & 9 & -6 & | & b_3 \end{bmatrix}.$$

Switch R1 and R3:

$$\begin{bmatrix} -3 & 9 & -6 & | & b_3 \\ 0 & -3 & -2 & | & b_2 \\ 0 & 0 & 4 & | & b_1 \end{bmatrix}.$$

The matrix is now in row echelon form. Furthermore, it does not have any pivot in the last (augmented) column. Therefore it is consistent, no matter what we choose for b_1 , b_2 , b_3 . (Alternatively, none of the rows have the form $\begin{bmatrix} 0 & 0 & 0 & | & b \end{bmatrix}$ where $b \neq 0$).