Name:

Quiz 1

Consider the linear system associated with the augmented matrix

$$
\left[\begin{array}{ccc:c}
0 & 1 & 0 & 2 \\
1 & 2 & 5 & 1 \\
-1 & 6 & -5 & 12
\end{array}\right]
$$

Reduce this to row-echelon form. Is this system consistent?
The matrix we are given has a leading 0 in the first row, and it isn't part of a column of all 0s. We first want to switch rows so we have a pivot in the first entry of the first row.

Switch R1 and R2:

$$
\left[\begin{array}{ccc:c}
1 & 2 & 5 & 1 \\
0 & 1 & 0 & 2 \\
-1 & 6 & -5 & 12
\end{array}\right]
$$

Add R1 to R3 to eliminate the -1 :

$$
\left[\begin{array}{lll|c}
1 & 2 & 5 & 1 \\
0 & 1 & 0 & 2 \\
0 & 8 & 0 & 13
\end{array}\right] .
$$

Add -8 R 2 to R 3 to eliminate the 8 :

$$
\left[\begin{array}{ccc:c}
\boxed{1} & 2 & 5 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & \boxed{-3}
\end{array}\right] .
$$

This matrix is now in row-echelon form (verify this). I have placed boxes around the pivots.

What is the interpretation of the third row as an equation? It tell us that

$$
-3=0 x_{1}+0 x_{2}+0 x_{3}=0 .
$$

But -3 doesn't equal 0 , no matter what we choose for x_{1}, x_{2}, x_{3}. So the system in inconsistent - it can have no solutions.

