ACTIVITY 10: PRACTICE FINAL

These problems focus on the **new material only.** You should also go over the previous midterms and practice midterms to prepare.

Question. Is the following set of vectors orthogonal?

$\begin{bmatrix} 2 \end{bmatrix}$		[-6]		[3]
-7	,	-3	,	1
$\begin{bmatrix} -1 \end{bmatrix}$		9		$\lfloor -1 \rfloor$

Question. Find a least squares solution of Ax = b by constructing the normal equations for \hat{x} and solving for \hat{x} with $A = \begin{bmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$ and $b = \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}$.

Question. Diagonalize the following matrix M by finding D, P and P^{-1} so that $M = PDP^{-1}$:

$$M = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

Question. Use your answer to the previous problem to find a formula for M^n where n is an arbitrary integer.

Question. If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation and $\{v_1, v_2, v_3\}$ is linearly dependent in \mathbb{R}^n . Why is the set $\{T(v_1), T(v_2), T(v_3)\}$ linearly dependent in \mathbb{R}^m ?

Question. Find the inverse of $\begin{bmatrix} 8 & 6 \\ 5 & 4 \end{bmatrix}$ and use it to solve the system: $\begin{array}{rcl} 8x_1 + 6x_2 &=& 2 \\ 5x_1 + 4x_2 &=& -1 \end{array}$

(You must use the inverse. Do not RREF the system of equations.)

Question. Let W be the first and third quadrants in the plane, i.e. $W = \{(x, y) | xy \ge 0\}$.

- Is W closed under scalar multiplication? Why or why not?
- Find two vectors, u and v in W, so that u + v is not in W.
- Is W a subspace of \mathbb{R}^2 ?

Question. Let W be the set of all vectors of the form $\begin{bmatrix} 2b+3c\\ -b\\ 2c \end{bmatrix}$ where b and c are arbitrary. Find vectors u and v so that $W = Span\{u, v\}$. Why does this show that W is a subspace of \mathbb{R}^3 ? Question. Find Col A and Nul A:

$$A = \begin{bmatrix} 1 & -4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}.$$

Question. Find A such that the given set is Col A:

$$\left\{ \begin{bmatrix} 2s+t\\r-s+2t\\3r+s\\2r-s-t \end{bmatrix} : r,s,t \ real \right\}$$

Question. Is the following set a basis for \mathbb{R}^3 ? Fully justify your answer.

$$\begin{bmatrix} 1\\0\\-3 \end{bmatrix}, \begin{bmatrix} 3\\1\\-4 \end{bmatrix}, \begin{bmatrix} -2\\-1\\1 \end{bmatrix}$$

Question. Find the vector x determined by the given coordinate vector $[x]_{\mathcal{B}} = \begin{bmatrix} 5\\3 \end{bmatrix}$ and the basis $\mathcal{B} = \left\{ \begin{bmatrix} 3\\-5 \end{bmatrix}, \begin{bmatrix} -4\\6 \end{bmatrix} \right\}$

Question. Find the coordinate vector $[x]_{\mathcal{B}}$ of $x = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ relative to the basis $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 3 \\ -5 \end{bmatrix} \right\}$

Question. $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation that first reflects across the line x = y and then rotates by 90 degrees clockwise. Find the standard matrix for T, and it's eigenvalues and eigenvectors.

							3	1	1
Question.	$Find \ the$	eigenvalues	and	eigenvectors	for the	matrix	0	5	0
							-2	0	0

Question. Define linear independence, span, basis, eigenvalue, eigenvector, orthogonal and orthonormal.

Question. • Find a unit vector in the direction of $u = \begin{bmatrix} -6\\4\\-3 \end{bmatrix}$.

• Find a unit vector orthogonal to u.