Handout 1

September 30, 2015

Problem 1 Find the general solution to the equation:

$$
\frac{d y}{d x}=\frac{y}{x}+2 x+1
$$

Problem 2 Find the general solution to the equation:

$$
\frac{d r}{d \theta}+r \tan (\theta)=\sec (\theta)
$$

Problem 3 The equation

$$
\frac{d y}{d x}+2 y=x y^{-2}
$$

is an example of a Bernoulli Equation.

- Show that the substitution $v=y^{3}$ reduces the equation to

$$
\frac{d v}{d x}+6 v=3 x
$$

- Solve the new equation for v. Then make the substituion $v=y^{3}$ to obtain the solution to the original Bernoulli equation.

Problem 4 Consider the Bernoulli Equation:

$$
\frac{d y}{d x}+p(x) y=q(x) y^{n}
$$

For $n=0$ or $n=1$ the equation is linear and we know how to solve it. Solve the Bernoulli Equation. (Hint: try the substitution $v=y^{1-n}$)

Method for Solving Linear Differential Equations

1. Write the equation in standard form:

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

2. Calculate the integrating factor $\mu(x)$:

$$
\mu(x)=\exp \left[\int P(x) d x\right]
$$

3. Multiply the equation in standard form by $\mu(x)$:

$$
\mu(x) \frac{d y}{d x}+P(x) \mu(x) y=\mu(x) Q(x)
$$

which then simplifies to

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) Q(x)
$$

4. Integrate and divide by $\mu(x)$.
