Handout 9

September 3, 2015

Problem 1

$$
\begin{gathered}
y^{\prime \prime}+9 y=g(t) \\
y(0)=2, y^{\prime}(0)=-3
\end{gathered}
$$

1. Find the transfer function $H(s)$ for the system.
2. Find the impulse response function $h(t)$.
3. Give a formula for the solution to the initial value problem.

Problem 2 Determine $\mathcal{L}(f)$, where the periodic function f is described by the following graph:

Unit Step Function The function $u(t)$ defined by $u(t)=0$ for $t<0$ and $u(t)=1$ for $t>0$.

Laplace Transform of Step Function

$$
\mathcal{L}(u(t-a))(s)=\frac{e^{-a s}}{s}
$$

Translation in t Let $F(s)=\mathcal{L}(f)(s)$ exist for $s>\alpha \geq 0$. If a is a positive constant, then

$$
\mathcal{L}(f(t-a) u(t-a))(s)=e^{-a s} F(s)
$$

Convolution Let $f(t)$ and $g(t)$ be piecewise continuous on $[0, \infty)$. The convolution of $f(t)$ and $g(t)$, denoted $f * g$, is defined by

$$
(f * g)(t)=\int_{0}^{t} f(t-v) g(v) d v
$$

Properties of Convolution Let $f(t), g(t)$ and $h(t)$ be piecewise continuous on $[0, \infty)$. Then

- $f * g=g * f$
- $f *(g+h)=(f * g)+(f * h)$
- $(f * g) * h=f *(g * h)$
- $f * 0=0$

Convolution Theorem Let $f(t)$ and $g(t)$ be piecewise continous on $[0, \infty)$ and of exponential order α and set $F(s)=\mathcal{L}(f)(s)$ and $G(s)=\mathcal{L}(g)(s)$. Then

$$
\mathcal{L}(f * g)(s)=F(s) G(s)
$$

Transfer Function The transfer function $H(s)$ of a linear system is defined as the ratio of the Laplace transform of the output function $y(t)$ to the Laplace transform of the input function $g(t)$, under the assumption that all initial conditions are zero. That is, $H(s)=Y(s) / G(s)$. For example, if the linear system is governed by the differential equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t), \quad t>0
$$

where a, b, c are constants, we can compute the transfer function as follows. Take the Laplace transform of both sides to get

$$
a s^{2} Y(s)-a s y(0)-a y^{\prime}(0)+b s Y(s)-b y(0)+c Y(s)=G(s)
$$

Since the initial conditions are assumed to be zero, the equation reduces to

$$
\left(a s^{2}+b s+c\right) Y(s)=G(s)
$$

Thus the transfer function is

$$
H(s)=\frac{Y(s)}{G(s)}=\frac{1}{a s^{2}+b s+c}
$$

Note similarity to finding the roots of the auxiliary equation of the homogeneous equation. Indeed, to invert $Y(s)=G(s) /\left(a s^{2}+b s+c\right)$ the first step is to find the roots of the denominator and use partial fractions.

Impulse Response Function The function $h(t)=\mathcal{L}^{-1}(H)(t)$ is called the impulse response function for the system.

Solution Using Impulse Response Function Consider the initial value problem

$$
a y^{\prime \prime}+b y^{\prime}+c y=g, \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
$$

Let y_{k} be the solution to the corresponding homogeneous system (when $g=0$). Let h be the impulse response function. Then the unique solution is given by

$$
y(t)=(h * g)(t)+y_{k}(t)=\int_{0}^{t} h(t-v) g(v) d v+y_{k}(t)
$$

