Handout 8

September 1, 2015

Problem 1 Solve the IVP using the method of Laplace transforms.

$$y'' - 2y' + 5y = 0$$

 $y(0) = 2, y'(0) = 4$

Problem 2 Solve the IVP using the method of Laplace transforms.

 $y' + 3y = 13\sin(2t)$ y(0) = 6

Problem 3 Solve the IVP using the method of Laplace transforms.

$$y''' - y'' + y' - y = 0$$
$$y(0) = 1, y'(0) = 1, y''(0) = 3$$

Method of Laplace Transforms To solve an initial value problem:

- 1. Take the Laplace transform of both sides of the equation.
- 2. Use the properties of the Laplace transform and the initial conditions to obtain an equation for the Laplace transform of the solution and then solve this equation for the transform.
- 3. Determine the inverse Laplace transform of the solution by looking it up in a table or by using a suitable method (such as partial fractions) in combination with the table.

Laplace Transform The Laplace transform of a function f(t) is the function F(s) defined by

$$F(s) = \int_0^\infty e^{-st} f(t) dt$$

Table of Laplace Transforms

f(t)	$F(s) = \mathcal{L}(f)(s)$
1	$\frac{1}{s}$
e^{at}	$\frac{1}{s-a}$
t^n	$\frac{n!}{s^{n+1}}$
$\sin(bt)$	$\frac{b}{s^2+b^2}$
$\cos(bt)$	$\frac{s}{s^2+b^2}$
$e^{at}t^n$	$\frac{n!}{(s-a)^{n+1}}$
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$

Properties of Laplace Transform

- $\mathcal{L}(f+g) = \mathcal{L}(f) + \mathcal{L}(g)$
- $\mathcal{L}(cf) = c\mathcal{L}(f)$ for any constant c
- $\mathcal{L}(e^{at}f(t)(s) = \mathcal{L}(f)(s-a)$
- $\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) f(0)$
- $\mathcal{L}(f'')(s) = s^2 \mathcal{L}(f)(s) sf(0) f'(0)$
- $\mathcal{L}(f^{(n)})(s) = s^n \mathcal{L}(f)(s) s^{n-1} f(0) s^{n-2} f'(0) \dots f^{(n-1)}(0)$
- $\mathcal{L}(t^n f(t))(s) = (-1)^n \frac{d^n}{ds^n} (\mathcal{L}(f)(s))$