Handout 4

August 13, 2015

Problem 1 Find a particular solution first by undetermined coefficients, and then by variation of parameters.

$$
2 y^{\prime \prime}-2 y^{\prime}-4 y=2 e^{2 t}
$$

Problem 2 Solve with variation of parameters.

$$
y^{\prime \prime}+y=\sec (t)
$$

Problem 3 Solve with variation of parameters.

$$
y^{\prime \prime}+y=\tan ^{2}(t)
$$

Problem 4 Use the method of variation of parameters to show that

$$
y(t)=c_{1} \cos (t)+c_{2} \sin (t)+\int_{0}^{t} f(s) \sin (t-s) d s
$$

is a general solution to the differential equation

$$
y^{\prime \prime}+y=f(t)
$$

where $f(t)$ is a continuous function on $(-\infty, \infty)$.
(Hint: Use the trigonometric identity $\sin (t-s)=\sin t \cos s-\sin s \cos t$)

Method of Variation of Parameters To determine a particular solution to $a y^{\prime \prime}+b y^{\prime}+c y=f$:

1. Find two linearly independent solutions $\left\{y_{1}(t), y_{2}(t)\right\}$ to the corresponding homogeneous equation and take

$$
y_{p}(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)
$$

2. Determine $v_{1}(t)$ and $v_{2}(t)$ by solving the following system for $v_{1}^{\prime}(t)$ and $v_{2}^{\prime}(t)$ and integrating.

$$
\begin{aligned}
y_{1} v_{1}^{\prime}+y_{2} v_{2}^{\prime} & =0 \\
y_{1}^{\prime} v_{1}^{\prime}+y_{2}^{\prime} v_{2}^{\prime} & =\frac{f}{a}
\end{aligned}
$$

3. Substitute $v_{1}(t)$ and $v_{2}(t)$ into the expression for $y_{p}(t)$ to obtain a particular solution.

Method of Undetermined Coefficients To find a particular solution to the differential equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=C t^{m} e^{r t}
$$

where m is a nonnegative integer, use the form

$$
y_{p}(t)=t^{s}\left(A_{m} t^{m}+\ldots+A_{1} t+A_{0}\right) e^{r t}
$$

with

- $s=0$ if r is not a root of the associated auxiliary equation
- $s=1$ if r is a simple root of the associated auxiliary equation
- $s=2$ if r is a double root of the associated auxiliary equation

To find a particular solution to the differential equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=C t^{m} e^{\alpha t} \cos (\beta t)
$$

or

$$
a y^{\prime \prime}+b y^{\prime}+c y=C t^{m} e^{\alpha t} \sin (\beta t)
$$

for $\beta \neq 0$, use the form
$y_{p}(t)=t^{s}\left(A_{m} t^{m}+\ldots+A_{1} t+A_{0}\right) e^{\alpha t} \cos (\beta t)+t^{s}\left(B_{m} t^{m}+\ldots+B_{1} t+B_{0}\right) e^{\alpha t} \sin (\beta t)$
with

- $s=0$ if $\alpha+i \beta$ is not a root of the associated auxiliary equation
- $s=1$ if $\alpha+i \beta$ is a root of the associated auxiliary equation.

