Handout 3

August 11, 2015

Find a general solution to the given differential equations.

1. $y^{\prime \prime}-5 y^{\prime}+6 y=0$
2. $y^{\prime \prime}+6 y^{\prime}+9 y=0$
3. $y^{\prime \prime}+y=0$
4. $y^{\prime \prime}-y^{\prime}-2 y=0$

Homogeneous Second Order Equation with Constant Coefficients a, b, c constants with $a \neq 0$

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Linearly Independent Solutions Two solutions y_{1} and y_{2} to the homogeneous equation on the interval I are said to be linearly independent on I if neither function is a constant times the other on I. This will be true provided their Wronskian

$$
W\left[y_{1}, y_{2}\right](t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)
$$

General Solution to Homogeneous Equation: $c_{1} y_{1}+c_{2} y_{2}$ If y_{1} and y_{2} are linearly independent solutions to the homogeneous equation, then a general solution is

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

where c_{1} and c_{2} are arbitrary constants.

Form of General Solution The form of a general solution for a homogeneous equation with constant coefficients depends on the roots

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

of the auxiliary equation $a r^{2}+b r+c=0, a \neq 0$.

- When $b^{2}-4 a c>0$, the auxiliary equation has two distinct real roots r_{1} and r_{2} and a general solution is

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

- When $b^{2}-4 a c=0$, the auxiliary equation has a repeated real root $r=$ $r_{1}=r_{2}$ and a general solution is

$$
y(t)=c_{1} e^{r t}+c_{2} t e^{r t}
$$

- When $b^{2}-4 a c<0$, the auxiliary equation has complex conjugate roots $r=\alpha \pm i \beta$ and a general solution is

$$
y(t)=c_{1} e^{\alpha t} \cos (\beta t)+c_{2} e^{\alpha t} \sin (\beta t)
$$

Special Integrating Factors for Exact Equations Suppose the equation $M(x, y) d x+N(x, y) d y=0$ is not exact.

An integrating factor of the equation is a function $\mu(x, y)$ such that the equation

$$
\mu(x, y) M(x, y) d x+\mu(x, y) N(x, y) d y=0
$$

is exact.
If $(\partial M / \partial y-\partial N / \partial x) / N$ depends only on x, then

$$
\mu(x)=\exp \left[\int\left(\frac{\partial M / \partial y-\partial N / \partial x}{N}\right) d x\right]
$$

is an integrating factor for the equation.
If $(\partial N / \partial x-\partial M / \partial y) / M$ depends only on y, then

$$
\mu(y)=\exp \left[\int\left(\frac{\partial N / \partial x-\partial M / \partial y}{M}\right) d y\right]
$$

is an integrating factor for the equation.

