Handout 2

August 6, 2015

Problem 1 Determine whether the equation is exact. If it is, then solve it.

$$
(2 x+y) d x+(x-2 y) d y=0
$$

Problem 2 Determine whether the equation is exact. If it is, then solve it.

$$
(x / y) d y+(1+\ln y) d x=0
$$

Problem 3 Determine whether the equation is exact. If it is, then solve it.

$$
\left(y^{2}+2 x y\right) d x-x^{2} d y=0
$$

Problem 4 Find an integrating factor of the form $x^{n} y^{m}$ and solve the equation.

$$
\left(2 y^{2}-6 x y\right) d x+\left(3 x y-4 x^{2}\right) d y=0
$$

Definition The differential form $M(x, y) d x+N(x, y) d y$ is exact if there is a function $F(x, y)$ such that

$$
\frac{\partial F}{\partial x}=M \quad \text { and } \quad \frac{\partial F}{\partial y}=N
$$

If $M d x+N d y$ is exact, then the equation

$$
M(x, y) d x+N(x, y) d y=0
$$

is called an exact equation.

Test for Exactness $M(x, y) d x+N(x, y) d y=0$ is an exact equation if and only if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.

Method for Solving Exact Equations

1. If $M d x+N d y=0$ is exact, then $\frac{\partial F}{\partial x}=M$. Integrate this with respect to x to get

$$
F(x, y)=\int M(x, y) d x+g(y)
$$

2. To determine $g(y)$, take the partial derivative with respect to y of both sides and substitute N for $\frac{\partial F}{\partial y}$. Then solve for $g^{\prime}(y)$.
3. Integrate $g^{\prime}(y)$ to obtain $g(y)$ up to a numerical constant. Substitute for $g(y)$ to get $F(x, y)$.
4. The solution to $M d x+N d y=0$ is given implicitly by $F(x, y)=C$.

Integrating Factor If $M(x, y) d x+N(x, y) d y=0$ is not exact, but

$$
\mu(x, y) M(x, y) d x+\mu(x, y) N(x, y) d y=0
$$

is exact, then $\mu(x, y)$ is called an integrating factor for the equation.

