The Jellyfish Algorithm

Ellie Grano

UC Santa Barbara

November 20, 2010

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

Background

Evaluation algorithms common in topology

▶ Examples: Kauffman bracket, HOMFLY polynomial

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ Idea:

$$\langle \bigcirc \rangle \rightarrow \text{number}$$

Background

- Evaluation algorithms common in topology
 - ▶ Examples: Kauffman bracket, HOMFLY polynomial

► Idea:

$$\langle \bigcirc \rangle \rightarrow \text{number}$$

▶ 2008 - Morrison, Peters, and Snyder Skein theory for the D_{2n} planar algebra

Background

- Evaluation algorithms common in topology
 - ▶ Examples: Kauffman bracket, HOMFLY polynomial

うして ふゆ く 山 マ ふ し マ う く し マ

► Idea:

$$\langle \bigcirc \rangle \rightarrow \text{number}$$

- ▶ 2008 Morrison, Peters, and Snyder Skein theory for the D_{2n} planar algebra
- 2009 Bigelow
 Skein theory for the ADE planar algebras

"jellyfish algorithm" introduced

▶ For each k, \mathcal{TL}_{2k} is an algebra over $\mathbb{C}(q)$. As a vector space, \mathcal{TL}_{2k} is spanned by diagrams with k nonintersecting strands. The multiplication operation is vertical stacking. We also have the following "bubble bursting" relation:

▶ For each k, \mathcal{TL}_{2k} is an algebra over $\mathbb{C}(q)$. As a vector space, \mathcal{TL}_{2k} is spanned by diagrams with k nonintersecting strands. The multiplication operation is vertical stacking. We also have the following "bubble bursting" relation:

$$\langle \bigcirc \rangle = \delta \cdot \langle \bigcirc \rangle$$
, where $\delta = q + q^{-1}$

▶ For each k, \mathcal{TL}_{2k} is an algebra over $\mathbb{C}(q)$. As a vector space, \mathcal{TL}_{2k} is spanned by diagrams with k nonintersecting strands. The multiplication operation is vertical stacking. We also have the following "bubble bursting" relation:

$$\left\langle \bigcirc \right\rangle = \delta \cdot \left\langle \bigcirc \right\rangle, \text{ where } \delta = q + q^{-1}$$

▶ For each k, \mathcal{TL}_{2k} is an algebra over $\mathbb{C}(q)$. As a vector space, \mathcal{TL}_{2k} is spanned by diagrams with k nonintersecting strands. The multiplication operation is vertical stacking. We also have the following "bubble bursting" relation:

• These vector spaces assemble together into a planar algebra with $\mathcal{TL}_0 \cong \mathbb{C}(q)$.

$$\blacktriangleright \qquad := iq^{\frac{1}{2}} \qquad - iq^{-\frac{1}{2}} \qquad \in \mathcal{TL}_4$$

This satisfies R2 and R3. For R1, we get a positive twist factor $iq^{3/2}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\blacktriangleright \qquad := iq^{\frac{1}{2}} \qquad - iq^{-\frac{1}{2}} \qquad \in \mathcal{TL}_4$$

This satisfies R2 and R3.

For R1, we get a positive twist factor $iq^{3/2}$.

► Jones-Wenzl projections. For each k there is a unique element $p_k \in \mathcal{TL}_{2k}$ such that:

$$\blacktriangleright \qquad := iq^{\frac{1}{2}} \qquad - iq^{-\frac{1}{2}} \qquad \in \mathcal{TL}_4$$

This satisfies R2 and R3.

For R1, we get a positive twist factor $iq^{3/2}$.

▶ Jones-Wenzl projections. For each k there is a unique element $p_k \in \mathcal{TL}_{2k}$ such that:

$$p_k^2 = p_k$$

$$p_k \text{ is uncappable.}$$

$$p_k = zero$$

It follows that:

$$p_k = \left| \left| \dots \right| + \sum \alpha_Q \cdot Q$$
, where each Q contains a cap.

Temperley-Lieb when q is a root of unity

If $q = e^{i\pi/n+1}$, then p_n becomes negligible. So for \mathcal{TL} at this value of q, we must add the relation $p_n = zero$ (this gives us the A_n planar algebra). For example, if $q = e^{i\pi/6}$, then \mathcal{TL} will have the relations:

Temperley-Lieb when q is a root of unity

If $q = e^{i\pi/n+1}$, then p_n becomes negligible. So for \mathcal{TL} at this value of q, we must add the relation $p_n = zero$ (this gives us the A_n planar algebra). For example, if $q = e^{i\pi/6}$, then \mathcal{TL} will have the relations:

$$\bullet (\bigcirc) = \delta \cdot (\bigcirc)$$

Temperley-Lieb when q is a root of unity

If $q = e^{i\pi/n+1}$, then p_n becomes negligible. So for \mathcal{TL} at this value of q, we must add the relation $p_n = zero$ (this gives us the A_n planar algebra). For example, if $q = e^{i\pi/6}$, then \mathcal{TL} will have the relations:

$$\bullet \ (\bigcirc) = \delta \cdot (\bigcirc)$$

Fix n = 2 and $q = e^{i\pi/6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_4 subject to the following relations:

Fix n = 2 and $q = e^{i\pi/6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_4 subject to the following relations:

$$\bullet (\bigcirc) = \delta \cdot (\bigcirc)$$

Fix n = 2 and $q = e^{i\pi/6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_4 subject to the following relations:

$$\bullet \quad (\bigcirc) = \delta \cdot (\bigcirc)$$
$$\bullet \quad |||||$$
$$\bullet \quad p_5 = zero$$

Fix n = 2 and $q = e^{i\pi/6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_4 subject to the following relations:

$$\bullet \quad (\bigcirc) = \delta \cdot (\bigcirc)$$
$$\bullet \quad [p_5] = zero$$

$$\blacktriangleright \qquad S = zero$$

Fix n = 2 and $q = e^{i\pi/6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_4 subject to the following relations:

・ロト ・ 同 ・ ・ ヨ ト ・ ヨ ・ うへの

Fix n = 2 and $q = e^{i\pi/6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_4 subject to the following relations:

(日) (日) (日) (日) (日) (日) (日)

An example of evaluating a diagram using the relations:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

But what about:

・ロト (四) (手) (日) (日) (日)

Partial braiding

Theorem

The relations imply the following partial braiding:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Example of the jellyfish algorithm

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The jellyfish algorithm

Part I

- ▶ Draw an arc for each S-box
- ▶ Order the arcs
- Drag the S-boxes in order under any strands

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

- Evaluate crossings
- ▶ Go to Part II

The jellyfish algorithm

Part I

- ▶ Draw an arc for each S-box
- ▶ Order the arcs
- Drag the S-boxes in order under any strands
- Evaluate crossings
- ▶ Go to Part II

Part II

- ► If there are zero S-boxes, evaluate as in *TL*
- ► If there is a cap on an S-box, evaluate as zero
- ▶ If there are two or more S-boxes
 - Pick a pair of S-boxes connected by at least two strands
 - ► Choose two strands connecting the pair and replace with a p₂

- ▶ Put in the correct coefficient
- Start Part II again

The jellyfish algorithm

Part I

- ▶ Draw an arc for each S-box
- Order the arcs
- Drag the S-boxes in order under any strands
- Evaluate crossings
- ▶ Go to Part II

Part II

- ► If there are zero S-boxes, evaluate as in *TL*
- ► If there is a cap on an S-box, evaluate as zero
- ▶ If there are two or more S-boxes
 - Pick a pair of S-boxes connected by at least two strands
 - ► Choose two strands connecting the pair and replace with a p₂

- ▶ Put in the correct coefficient
- Start Part II again

Change the ordering of the arcs Fact (for our value of q):

Change the ordering of the arcs Fact (for our value of q):

Idea: Add a p_4 along an S-box arc. Do this for each arc crossing that needs to be changed, then use the above fact.

・ロト ・ 四ト ・ 日ト ・ 日

Change the ordering of the arcs Fact (for our value of q):

Idea: Add a p_4 along an S-box arc. Do this for each arc crossing that needs to be changed, then use the above fact.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Alter the path of an arc

Notice that

implies:

Thus we have all three Reidemeister moves for the S-box arcs.

<ロト <回ト < 三ト < 三ト = 三

Fix n = 2 and $q = e^{i\pi/6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_4 subject to the following relations:

Fix n = 2 and $q = e^{i\pi/6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_4 subject to the following relations:

$$\bullet (\bigcirc) = \delta \cdot (\bigcirc)$$

Fix n = 2 and $q = e^{i\pi/6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_4 subject to the following relations:

Fix n = 2 and $q = e^{i\pi/6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_4 subject to the following relations:

$$\bullet \quad (\bigcirc) = \delta \cdot (\bigcirc)$$
$$\bullet \quad []p_5 \\ |]|||| = zero$$

$$\blacktriangleright \qquad S = zero$$

Fix n = 2 and $q = e^{i\pi/6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_4 subject to the following relations:

(日) (日) (日) (日) (日) (日) (日)

Fix n = 2 and $q = e^{i\pi/6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_4 subject to the following relations:

Summary

We have just proved the following:

Theorem The defined planar algebra is not trivial

This is part of the **Kuperberg program**:

Give a presentation for every interesting planar algebra, and prove as much as possible about the planar algebra using only its presentation.

Thank You

I also want to thank my advisor

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●