The Jellyfish Algorithm

Ellie Grano
UC Santa Barbara

November 20, 2010

Background

- Evaluation algorithms common in topology
- Examples: Kauffman bracket, HOMFLY polynomial
- Idea:

○; \rightarrow number

Background

- Evaluation algorithms common in topology
- Examples: Kauffman bracket, HOMFLY polynomial
- Idea:

- 2008 - Morrison, Peters, and Snyder Skein theory for the $D_{2 n}$ planar algebra

Background

- Evaluation algorithms common in topology
- Examples: Kauffman bracket, HOMFLY polynomial
- Idea:

- 2008 - Morrison, Peters, and Snyder Skein theory for the $D_{2 n}$ planar algebra
- 2009 - Bigelow

Skein theory for the ADE planar algebras
"jellyfish algorithm" introduced

The Temperley-Lieb planar algebra

- For each $k, \mathcal{T} \mathcal{L}_{2 k}$ is an algebra over $\mathbb{C}(q)$. As a vector space, $\mathcal{T} \mathcal{L}_{2 k}$ is spanned by diagrams with k nonintersecting strands. The multiplication operation is vertical stacking. We also have the following "bubble bursting" relation:

The Temperley-Lieb planar algebra

- For each $k, \mathcal{T} \mathcal{L}_{2 k}$ is an algebra over $\mathbb{C}(q)$. As a vector space, $\mathcal{T} \mathcal{L}_{2 k}$ is spanned by diagrams with k nonintersecting strands. The multiplication operation is vertical stacking. We also have the following "bubble bursting" relation:

$$
\bigcirc=\delta \cdot{ }^{-1}
$$

The Temperley-Lieb planar algebra

- For each $k, \mathcal{T} \mathcal{L}_{2 k}$ is an algebra over $\mathbb{C}(q)$. As a vector space, $\mathcal{T} \mathcal{L}_{2 k}$ is spanned by diagrams with k nonintersecting strands. The multiplication operation is vertical stacking. We also have the following "bubble bursting" relation:

$$
\mathfrak{O}!=\delta \cdot, \text { where } \delta=q+q^{-1}
$$

The Temperley-Lieb planar algebra

- For each $k, \mathcal{T} \mathcal{L}_{2 k}$ is an algebra over $\mathbb{C}(q)$. As a vector space, $\mathcal{T} \mathcal{L}_{2 k}$ is spanned by diagrams with k nonintersecting strands. The multiplication operation is vertical stacking. We also have the following "bubble bursting" relation:

- These vector spaces assemble together into a planar algebra with $\mathcal{T} \mathcal{L}_{0} \cong \mathbb{C}(q)$.

The Temperley-Lieb planar algebra

This satisfies R2 and R3.
For R1, we get a positive twist factor $i q^{3 / 2}$.

The Temperley-Lieb planar algebra

$\left.\checkmark \backslash=i q^{\frac{1}{2}}\right\rangle\left\langle-i q^{-\frac{1}{2}} \backsim \in \mathcal{T} \mathcal{L}_{4}\right.$
This satisfies R2 and R3.
For R1, we get a positive twist factor $i q^{3 / 2}$.

- Jones-Wenzl projections.

For each k there is a unique element $p_{k} \in \mathcal{T} \mathcal{L}_{2 k}$ such that:

- $p_{k}^{2}|=| p_{k}$
- p_{k} is uncappable.

The Temperley-Lieb planar algebra

$\left.>:=i q^{\frac{1}{2}}\right\rangle\left\langle-i q^{-\frac{1}{2}} \backsim \in \mathcal{T} \mathcal{L}_{4}\right.$
This satisfies R2 and R3.
For R1, we get a positive twist factor $i q^{3 / 2}$.

- Jones-Wenzl projections.

For each k there is a unique element $p_{k} \in \mathcal{T} \mathcal{L}_{2 k}$ such that:

- $p_{k}^{2}|=| p_{k}$
- p_{k} is uncappable.

It follows that:
$p_{k}=\| \ldots+\sum \alpha_{Q} \cdot Q$, where each Q contains a cap.

Temperley-Lieb when q is a root of unity

If $q=e^{i \pi / n+1}$, then p_{n} becomes negligible. So for $\mathcal{T} \mathcal{L}$ at this value of q, we must add the relation $p_{n}=$ zero (this gives us the A_{n} planar algebra). For example, if $q=e^{i \pi / 6}$, then $\mathcal{T} \mathcal{L}$ will have the relations:

Temperley-Lieb when q is a root of unity

If $q=e^{i \pi / n+1}$, then p_{n} becomes negligible. So for $\mathcal{T} \mathcal{L}$ at this value of q, we must add the relation $p_{n}=$ zero (this gives us the A_{n} planar algebra). For example, if $q=e^{i \pi / 6}$, then $\mathcal{T} \mathcal{L}$ will have the relations:

Temperley-Lieb when q is a root of unity

If $q=e^{i \pi / n+1}$, then p_{n} becomes negligible. So for $\mathcal{T} \mathcal{L}$ at this value of q, we must add the relation $p_{n}=$ zero (this gives us the A_{n} planar algebra). For example, if $q=e^{i \pi / 6}$, then $\mathcal{T} \mathcal{L}$ will have the relations:

The $D_{2 n}$ planar algebra (\mathcal{P})

Fix $n=2$ and $q=e^{i \pi / 6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_{4} subject to the following relations:

The $D_{2 n}$ planar algebra (\mathcal{P})

Fix $n=2$ and $q=e^{i \pi / 6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_{4} subject to the following relations:
-

The $D_{2 n}$ planar algebra (\mathcal{P})

Fix $n=2$ and $q=e^{i \pi / 6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_{4} subject to the following relations:
\cdots,
$\frac{p_{5}}{\left\|\left\|\|_{2}\right.\right.}=$ zero

The $D_{2 n}$ planar algebra (\mathcal{P})

Fix $n=2$ and $q=e^{i \pi / 6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_{4} subject to the following relations:
(os,

The $D_{2 n}$ planar algebra (\mathcal{P})

Fix $n=2$ and $q=e^{i \pi / 6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_{4} subject to the following relations:

The $D_{2 n}$ planar algebra (\mathcal{P})

Fix $n=2$ and $q=e^{i \pi / 6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_{4} subject to the following relations:

$=i$.

An example of evaluating a diagram using the relations:

But what about:

Partial braiding

Theorem
The relations imply the following partial braiding:

Example of the jellyfish algortihm

Will there always be an $S^{2} ?$

Will there always be an S^{2} ?

The jellyfish algorithm

Part I

- Draw an arc for each S-box
- Order the arcs
- Drag the S-boxes in order under any strands
- Evaluate crossings
- Go to Part II

The jellyfish algorithm

Part I

- Draw an arc for each S-box
- Order the arcs
- Drag the S-boxes in order under any strands
- Evaluate crossings
- Go to Part II

Part II

- If there are zero S-boxes, evaluate as in $\mathcal{T} \mathcal{L}$
- If there is a cap on an S-box, evaluate as zero
- If there are two or more S-boxes
- Pick a pair of S-boxes connected by at least two strands
- Choose two strands connecting the pair and replace with a p_{2}
- Put in the correct coefficient
- Start Part II again

The jellyfish algorithm

Part I

- Draw an arc for each S-box
- Order the arcs
- Drag the S-boxes in order under any strands
- Evaluate crossings
- Go to Part II

Part II

- If there are zero S-boxes, evaluate as in $\mathcal{T} \mathcal{L}$
- If there is a cap on an S-box, evaluate as zero
- If there are two or more S-boxes
- Pick a pair of S-boxes connected by at least two strands
- Choose two strands connecting the pair and replace with a p_{2}
- Put in the correct coefficient
- Start Part II again

Change the ordering of the arcs

Fact (for our value of q):

Change the ordering of the arcs

Fact (for our value of q):

Idea: Add a p_{4} along an S-box arc. Do this for each arc crossing that needs to be changed, then use the above fact.

Change the ordering of the arcs

Fact (for our value of q):

Idea: Add a p_{4} along an S-box arc. Do this for each arc crossing that needs to be changed, then use the above fact.

Alter the path of an arc

Notice that

implies:

$$
=\bar{z}=
$$

Thus we have all three Reidemeister moves for the S-box arcs.

Check the algorithm respects the relations

Fix $n=2$ and $q=e^{i \pi / 6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_{4} subject to the following relations:

Check the algorithm respects the relations

Fix $n=2$ and $q=e^{i \pi / 6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_{4} subject to the following relations:
-

Check the algorithm respects the relations

Fix $n=2$ and $q=e^{i \pi / 6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_{4} subject to the following relations:

Check the algorithm respects the relations

Fix $n=2$ and $q=e^{i \pi / 6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_{4} subject to the following relations:
(os,

Check the algorithm respects the relations

Fix $n=2$ and $q=e^{i \pi / 6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_{4} subject to the following relations:

Check the algorithm respects the relations

Fix $n=2$ and $q=e^{i \pi / 6}$. Define \mathcal{P} to be the planar algebra generated by a single S-box in \mathcal{P}_{4} subject to the following relations:

Summary

We have just proved the following:

Theorem
The defined planar algebra is not trivial

This is part of the Kuperberg program:
Give a presentation for every interesting planar algebra, and prove as much as possible about the planar algebra using only its presentation.

Thank You

I also want to thank my advisor

