The Disambiguated Temperley-Lieb Algebra

Ellie Grano

Advisor: Stephen Bigelow
UC Santa Barbara
January 4, 2012

The Temperley-Lieb Algebra

- Diagrams with n non-crossing strands form a basis for $\mathcal{T} \mathcal{L}_{n}$ over \mathbb{C}
- Multiplication is vertical stacking:

The Temperley-Lieb Algebra

- Diagrams with n non-crossing strands form a basis for $\mathcal{T} \mathcal{L}_{n}$ over \mathbb{C}
- Multiplication is vertical stacking:

The Temperley-Lieb Algebra

- Diagrams with n non-crossing strands form a basis for $\mathcal{T} \mathcal{L}_{n}$ over \mathbb{C}
- Multiplication is vertical stacking:

- These vector spaces assemble together into a planar algebra

The Temperley-Lieb Algebra

- The "closed diagrams" are collections of loops

The Temperley-Lieb Algebra

- The "closed diagrams" are collections of loops

The Temperley-Lieb Algebra

- The "closed diagrams" are collections of loops

The Disambiguated Temperley-Lieb Algebra

- Diagrams contain oriented loops

The Disambiguated Temperley-Lieb Algebra

- Diagrams contain oriented loops
- Each "disambiguated" diagram defines one of the states

The Disambiguated Temperley-Lieb Algebra

- Diagrams contain oriented loops
- Each "disambiguated" diagram defines one of the states

The Disambiguated Temperley-Lieb Algebra

- Diagrams contain oriented loops
- Each "disambiguated" diagram defines one of the states

The Disambiguated Temperley-Lieb Algebra

The Disambiguated Temperley-Lieb Algebra

- The pop-switch relations:

The Disambiguated Temperley-Lieb Algebra

- The pop-switch relations:

The Disambiguated Temperley-Lieb Algebra

- The pop-switch relations:

- Consequence

The Disambiguated Temperley-Lieb Algebra

- The pop-switch relations:

- Consequence

The Disambiguated Temperley-Lieb Algebra

- The pop-switch relations:

- Consequence

The Disambiguated Temperley-Lieb Algebra

- The pop-switch relations:

- Consequence

The Disambiguated Temperley-Lieb Algebra

- More Consequences:

The Disambiguated Temperley-Lieb Algebra

The Disambiguated Temperley-Lieb Algebra

- Notation

The Disambiguated Temperley-Lieb Algebra

- Notation

The Disambiguated Temperley-Lieb Algebra

The Disambiguated Temperley-Lieb Algebra

- Consequence: mulit-pop-switch

The Disambiguated Temperley-Lieb Algebra

- Consequence: mulit-pop-switch

- More Consequences

The Disambiguated Temperley-Lieb Algebra

- More Consequences:

The Disambiguated Temperley-Lieb Algebra

- More Consequences:

The Disambiguated Temperley-Lieb Algebra

The Disambiguated Temperley-Lieb Algebra

The Disambiguated Temperley-Lieb Algebra

The Disambiguated Temperley-Lieb Algebra

- Even More Consequences

The Disambiguated Temperley-Lieb Algebra

- Even More Consequences

The Disambiguated Temperley-Lieb Algebra

- Even More Consequences

The Disambiguated Temperley-Lieb Algebra

- Even More Consequences

The Disambiguated Temperley-Lieb Algebra

- Even More Consequences

The Basis

The Basis

- Basis elements are products of the following types of diagrams:

The Basis

- Basis elements are products of the following types of diagrams:

The Basis

- Basis elements are products of the following types of diagrams:

The Basis

- Basis elements are products of the following types of diagrams:

subject to the properties discussed earlier.

The Basis

- Basis elements are products of the following types of diagrams:

subject to the properties discussed earlier.
- For example $n \neq m$ and there is at most one k with $k>n$ and $k>m$.

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Sequences of Integers

Sequences of Integers

- Our diagrams correspond to finite sequences of integers that sum to 0 , with a marked point.

Sequences of Integers

- Our diagrams correspond to finite sequences of integers that sum to 0 , with a marked point.

Sequences of Integers

- Our diagrams correspond to finite sequences of integers that sum to 0 , with a marked point.

Sequences of Integers

- Our diagrams correspond to finite sequences of integers that sum to 0 , with a marked point.

Sequences of Integers

- Our diagrams correspond to finite sequences of integers that sum to 0 , with a marked point.

Sequences of Integers

Sequences of Integers

- Multiplication of diagrams corresponds to addition of the sequences

Sequences of Integers

- Multiplication of diagrams corresponds to addition of the sequences

Sequences of Integers

- Multiplication of diagrams corresponds to addition of the sequences

Current Work

Current Work

- The algebra we have discussed represented the closed diagrams of the Disambiguated Temperley-Lieb planar algebra

Current Work

- The algebra we have discussed represented the closed diagrams of the Disambiguated Temperley-Lieb planar algebra
- The $\mathcal{T} \mathcal{L}$ planar algebra can be thought of as sitting inside the $\mathcal{D} \mathcal{T} \mathcal{L}$ planar algebra if we define

Current Work

Current Work

- Jones-Wenzl projections p_{n} may be written more simply in the $\mathcal{D T} \mathcal{L}$ planar algebra

Current Work

- Jones-Wenzl projections p_{n} may be written more simply in the $\mathcal{D} \mathcal{T} \mathcal{L}$ planar algebra

Current Work

- Jones-Wenzl projections p_{n} may be written more simply in the $\mathcal{D} \mathcal{T} \mathcal{L}$ planar algebra

Current Work

- Jones-Wenzl projections p_{n} may be written more simply in the $\mathcal{D} \mathcal{T} \mathcal{L}$ planar algebra

Current Work

Current Work

Conjecture

p_{n} is isomorphic to a direct sum of $n+1$ diagrams, each consisting of vertical strands with a sequence of up or down orientations.

Thank you!

