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On K3 surfaces with large Picard number
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A K3 surface is a simply connected compact complex manifold of dimension
two with a nowhere-vanishing holomorphic 2-form. K3 surfaces have received
much attention in the last 25 years, both because of the important place they
occupy in the classification of compact complex surfaces [4], and because the
“period map” for K3 surfaces is quite well-behaved (there is a “global Torelli
theorem™ [15, 1, 17, 7], and a “surjectivity of the pericd map” theorem [5, 21,
6, 19, 93.) Among classical examples of K3 surfaces are the “Kummer sur-
faces”, which play a crucial role in the theory, and which are defined as
follows. Let Z be a complex torus of dimension two,  be an involution on Z
induced by multiplication by -1 on the universal cover €2, and Y be the
minimal resolution of singularities of Z/:. Then Y is a Kummer surface; all
Kummer surfaces are K 3 surfaces.

The Picard number of a K3 surface is the rank of its group of line bundies;
this rank ranges from 0 to 20. If X is a K3 surface with Picard number 20,
then Shioda and Inose [18] have constructed an involution @ on X such that
the guotient X/r is birational to a Kummer surface. This gives rise to a
diagram

in which the dotted arrows arc rational maps of degree 2, X and Y are K3
surfaces, and Z is a complex torus. Shioda and Inose further show that this
diagram induces an isomorphism of integral Hodge structures on the transcen-
dental lattices of X and Z.

The main result of this paper is a generalization of the construction of
Shioda and Inose. We show that there is a diagram analogous to theirs for any
algebraic K3 surface of Picard number 19 or 20, and give precise conditions
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for the existence of such a diagram when the Picard number is 17 or 18. (Such
a diagram cannot exist for algebraic K3 surfaces of Picard number less than
17.) This work was prompted by a remark of Takayuki Oda [13], who
conjectured that analogues of the Shioda-Inose construction should exist when
the Picard number is 17, 18, or 19.

The plan of the paper is as follows: Section 1 reviews definitions and results
about Hodge theory, complex tori, and K3 surfaces. Section 2 summarizes the
work of Nikulin [12] on embeddings of quadratic forms, and draws some
consequences for K3 surfaces and complex tori. Sections 3, 4, and 5 discuss
involutions on K3 surfaces and complex tori, relying heavily on two other
papers of Nikulin [10, 11]. In Sect. 6, we generalize the Shioda-Inose con-
struction, and in Sect. 7 we discuss Oda’s conjecture.

1. Hodge structures, complex tori, and K3 surfaces

Definition 1.1, A lattice is a free Z-module of finite rank equipped with a Z-
valued symmetric bilinear form b(x,y). If L, and L, are two lattices, then
L,®L, denotes the orthogonal direct sum of L, and L,; I denotes

P=LOLD...6HL (rfactors).

If Lis a lattice and m is an integer, then L{m) denotes the same Z-module with
a form which has been altered by multiplication by m, that is,

bL(m)(x: y) = m(b!_(xs y))

An isomorphism of lattices preserving the bilinear form is called an isometry;
note that L is not isometric to L{m) when |m|>1. The group of self-isometries
of a lattice L is denoted by O(L).

A lattice is even if the associated quadratic form takes on only even values,
and is odd if the quadratic form takes on some odd value. The discriminant of a
lattice L, written discr(L), is the determinant of the matrix of its bilinear form.
A lattice is non-degenerate if its discriminant is non-zero, and unimodular if its
discriminant is +1. If L is a non-degenerate lattice, the signature of Lis a pair
(Sy4y S(_y), wWhere s, denotes the multiplicity of the eigenvalue +1 for the
quadratic form on L®R. (Note that with this definition, the statement that a
given lattice has a signature (s, S automatically implies that L is non-
degenerate) A lattice is indefinite if the associated quadratic form takes on
both positive and negative values; in the non-degenerate case, this is true if
and only if min(s,,, 5,_,)>0.

Examples 1.2. (1) U denotes the hyperbolic plane, that is, U is a free Z-module
of rank 2 whose bilinear form has matrix

(i o)
T o/
This is clearly an even lattice; note that U(—m)=U(m) for any m.

(ii) E; denotes the unique even unimodular positive definite lattice of
rank 8; the bilinear form on Eg is given by the matrix
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2 -1
-1 2 -1
-1 2 -1 -1
—1 2 0
-1 0 2 -1
-1 2 -1
—1 2 -1
L —1 2

(iii) (k) denotes the lattice of rank 1 such that b(x,x)=k for any generator
x of (k>.

Theorem 1.3 (Milnor [8]). Let L be an indefinite unimodular lattice. If L is odd,
e L= (@ —1y"
for some m and n. If Lis even, then

L=U"@E(£1)

for some m and n. In particular, the signature and parity of L determine L up 1o
isometry.

If X is a compact Kiahler surface with the property that H*(X,Z) is
torsion-free, then the intersection pairing gives H(X,Z) the structure of a
lattice. This lattice is unimodular by Poincaré duality, so that H*(X,Z) is
determined by its signature and parity. The Hodge index theorem [2] says that
the signature of the lattice H*(X,Z) is (2h*°+1, h"'—1) where A"
=dim H*/(X).

Definition 1.4. Let Lbe a lattice. A Hodge structure of weight 2 on L consists of

a “Hodge decomposition”
L®q: =L2’0€|')L1‘1@L0'2

such that L¥® =1%2, and L' =I"" (where  denotes complex conjugation),
and such that
b(x,%)>0 for 0% xel*",
b(x,y)=0 for x,yel*? and
b(x,y)=0 if xel**°®L>? and yelb.
A Hodge isometry is an isometry ¢: L, 5L, between laitices with Hodge
structures which preserves the Hodge decompositions.
A signed Hodge structure (of weight two) on a lattice L consists of a Hodge

structure on L such that the quadratic form restricted to L' ~(L®R) has
signature (1, n —1), together with a choice of one of the (two) components of

{xeL"' n{L®R):b(x,x)>0}. (*
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A signed Hodge isometry is a Hodge isometry between two lattices with signed
Hodge structures which preserves the choice of component of (x).

A polarized Hodge structure (of weight two) is a Hodge structure with the
property that the quadratic form is negative-definite when restricted to
L“*'n(L®R).

Let X be a compact Kihler surface such that H*(X, Z) is torsion-free. The
lattice H*(X,Z) has a natural signed Hodge structure of weight two: we take
the usual Hodge decomposition

(X, Q)= H**(X)@H" (X)®H**(X)
together with the component of
{xe H" (X, R):b(x, x)> 0}

which contains the cohomology class of any Kihler metric. The Hodge in-
dex theorem [2] guarantees that the signature of the form on H''(X,R) is
(1,h14 —1),

Let NS(X) be the Neron-Severi group of X, that is, the group of line
bundles on X, modulo those algebraically equivalent to zero. NS(X) has a
natural embedding in H3(X,Z), and can be identified with H*(X,Z)n H"'(X),
giving NS(X) the structure of a lattice. The Picard number of X, denoted
by p(X), is the rank of NS(X). The transcendental lattice of X, denoted
by Ty, is the orthogonal complement of NS(X) in H*(X,Z). The lattice T,
inherits a Hodge structure from the one on H}(X, Z).

If the Hodge structure on Ty is polarized, then its signature must be (24%°,
h"!—p+1) so that the signature of the lattice NS(X) is (1, p—1). But then
NS(X) contains an element of positive square-length; by a theorem of Kodaira
[4; Theorem §], this implies that X is algebraic. Conversely, if X is algebraic,
then the signature of NS(X) is (1, p—1), which implies that the Hodge struc-
ture on T, is polarized.

Let x,,,(X) denote the topological Euler characteristic of X.

Theorem-Definition 1.5 (Kodaira [4; Sect. 6]). Let X be a compact Kihler
surface with trivial canonical bundle, Then 4%°(X)=1, and either

(i) X=C?%L is a complex torus of (complex) dimension 2; in this case,
h"%(X)=2 and y,,,(X)=0, or

() X is a K3 surface, that is, h"-°(X)=0 and x,,,(X}=24. (In fact, a K3
surface can be defined as a compact complex surface with trivial canonical
bundle such that h'-°(X)=0, but Siu [20] has recently shown that every K3
surface is Kiihler.)

If X is a complex torus, then it is easy to see directly that H*(X,Z)=U> In
particular, H*(X,Z) is torsion-free, so that H%(X,Z) and Ty carry natural
Hodge structures. X is algebraic when T, is polarized; in this case, we call X
an abelian surface.

If X is a K3 surface, then H*(X, Z) has no torsion [16; Chap. IX, Sect. 3].
Thus, H*(X,Z) and T, carry natural Hodge structures. Moreover, a com-
putation involving the Wu formula [22] shows that H%(X,Z) is an even lattice

R
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(cf. [8] or [16]). The signature of this lattice is (3,19) by the Hodge index
theorem, so Theorem 1.3 implies that H3(X,Z) is isometric to the K 3 lattice A
=U@E (- 1)~

For complex tori and K3 surfaces, the following results go by the name
“the surjectivity of the period mapping”:

Theorem 1.6 (Shioda [17]). Given a signed Hodge structure on I3 there exists a
complex torus X of dimension two and o signed Hodge isometry

é: X, Z)>U?
(with respect to the given signed Hodge structure).
Theorem 1.7 ([5, 21, 6, 19, 9]). Given a signed Hodge structure on the K 3 lattice
A, there exists a K3 surface X and a signed Hodge isometry

¢: HI( X, Z)> A
(with respect to the given signed Hodge structure).

Definition 1.8. An embedding ML of lattices is primitive if L/M is free. Two
primitive embeddings M <], ML are isomorphic if there is an isometry
L=I which induces the identity map on M.

Corollary 1.9. Let A be the K 3 lattice.

{i) Suppose S=— U? (resp. S<A)} is a primitive sublattice of signature
(1, p —1). Then there exists an abelian surface (resp. algebraic K 3 surface ) X and an
isometry NS(X)=S.

(ii) Suppose T—U? (resp. T—>A) is a primitive sublattice of signature
(2,4—p) (resp. (2,20—p)). Then there exists an abelian surface (resp. algebraic K3
surface) X and an isometry Ty >T

Proof, Let L denote U? (resp. A4), and let b(x, y) denote the bilinear form on L.

(i) Choose a subspace & c L®R such that EnL=S§, and b|s has signature
(1, 3) (resp. signature (1, 19)). Pick some non-zero we L@ such that w L Z and
b{w, ©)=0. Define
[29=Cw; LM=I®C, L["'=Ca
Then LOC=L>"® L1 @L"? is a Hodge decomposition; choosing either com-

ponent of
{xe L} n{L@R):b(x,x) >0},

makes this into a signed Hodge structure. By Theorems 1.6 and 1.7, there is a
complex torus (resp. K3 surface) X and a signed Hodge isometry

¢ HX(X, )5 L.
But now ¢|ysx, gives an isometry of NS(X) with

M AL=XnL=8




110 D.R. Morrison

Since NS(X) has signature (1, p—1), X is algebraic.
(i} Let S be the orthogonal complement of T in L, and apply part (i): we

get
T, =NS(X)}*>S‘=T. QED.

2. Discriminant-forms and embeddings of lattices

Definition 2.1. Let A be a finite abelian group. The length of A, denoted 1(A), is
the minimum number of generators of 4."A guadratic Jform on 4 is a map

q: A-Q2Z
together with a symmetric bilinear form

b:AxA-Q/Z
such that
1) g{na)=n*g(a) for all neZ and acA.
2} gla+a')—g(a)—gla’)=2b(a, a'{mod 2Z). Note that if ¢ is a quadratic
form on A, then so is —g (with bilinear form —b). -
If Lis a non-degenerate even lattice, then there is a natural embedding

Le~I*=Hom(L, Z).

The (@-valued) quadratic form on L* induces a quadratic form g,, called the
discriminant-form of L, on the finite abelian group A; =IL*/I. Notice that
9r- 1= —4q;, and that g, o, =g, Bq,,. Given a non-degenerate even lattice L,
we attach as invariants (S+) Sy, 4,), where (S¢4)» S;_)) is the signature of L.
The usefulness of these invariants is shown by the following

Theorem 2.2 (Kneser [3], Nikulin [12; Corollary 1.13.3]). Let L be an even
lattice with invariants (S¢1y> $~y» 41 )- Suppose that

(1) 0<s .,

{i) 0<s,_,

(iii) I(4;)<rank(L)-2.

Then up to isometry, L is the only lattice with those invariants,

Lemma 2.3. Let M, and M, be even lartices with the same signature and
discriminant-form, and let L be an even lattice which is uniquely determined by its
signature and discriminant-form. If there is a primitive embedding M, L, then
there is a primitive embedding M, L,

Proof. Let K be the orthogonal complement of M, in L. Then we have a chain

of inclusions
{M,®K)cLc1I* (M, BK)*,

SINCe Apy, g = A4y, @A, (orthogonal direct sum), there is an isomorphism

¢: AM;@K‘*AM,@K
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preserving the discriminant-forms. Define
L'={leM,@K)*:¢(heL/M,BK)}.

Then there is an embedding M,—L. If meM$nL, then ¢(m)e(M}nLy
(M,@K) so that ¢(m)eM,, since M ==L is primitive. Thus, meM, so that
the embedding M,— L is primitive.

Since ¢ preserves the discriminant-form, ¢, =q,. Moreover, since
M,®K<L and M,@®KclL, L and L have the same signature. Thus,
L=L. QED,

Another easy argument yields the following

Lemma 2.4 (Nikulin [12; Proposition 1.6.1]). Let M—L be a primitive embedd-
ing of non-degenerate even lattices, and suppose that L is unimodular. Then

qu_g qu.

Conversely, if M, and M, are non-degenerate even lattices which satisfy g, =
—qy,. then there is a primitive embedding of M, into an even unimodular
lattice L such that M;=M,.

Corollary 2.5 (cf. [7; Theorem 2.4]). Let T be a non-degenerate even lattice of
rank r. Then there is a primitive embedding T—U",

Proof. By Lemma 2.4, since g _,,= —4, there is an even unimodular lattice L
and a primitive embedding T<L such that T*=T(-1). But then L has
signature (r,7), so that L=U" by Theorem 1.3. QE.D.

Recall that by Corollary 1.9(ii), the possible transcendental lattices of abe-
lian surfaces are all primitive sublattices Te U? of signature (2, 4—p).

Corollary 2.6. Let T be an even lattice of signature (2, k).

(i) If k=0 or 1, then there is a primitive embedding T—U".

(ii) If k=2, then there is a primitive embedding T—U? if and only if
T=UQT.

(iii) If k=3, then there is a primitive embedding T—U> if and only if
T=U*®T.

Proof 1f k=0 or 1, then T has rank £3, so that T—U? by Corollary 2.5.

If k=2 and T—U?3, let S=T*. Then U@S(—1) has the same signature as
T: by Lemma 2.4, it also has the same discriminant-form. Since I{47)={45)=
4—2, by Theorem 2.2, T= U @ S§(—1). Conversely, if T=U @ T, then by Corol-
lary 2.5, T'—=U?; thus, T—U">.

If k=3 and T—U?, let §=T*. Then U?@S(—1) has the same signature as
T; by Lemma 2.4, it also has the same discriminant-form. Since /(4y)=H{Ag) =
32, by Theorem 2.2, T=U?@® S(—1). Conversely, if T=U?@ T, then by Cor-
ollary 2.5, T’ U; thus, T—U’. QE.D.

We wilt need one further
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Corollary 2.7. Let Ty, be a sub-Q-lattice of URQ of signature (2, 2). Then the
quadratic form of Ty represents zero. '

Proof. Let T=TynU> By Corollary 2.6(ii), T=U®T". But U represents zero,
hence Ty also represents zero. Q.E.D.

The main result on embeddings of even lattices is

Theorem 2.8 (Nikulin {12; Theorem 1.14.4]). Let M be an even lattice with
invariants (¢, t,_y, qy), and let L be an even unimodular lattice of signature
(S04 95 Sy Supposg that

() 1., <8y
(i) 1,_,<s._,
(1ii) 1(A,) <rank(L)—rank(M)}—2.
Then there exists a unique primitive embedding of M into L.

This theorem has quite strong consequences for the structure of Néron-
Severi groups and transcendental lattices of K3 surfaces. Let A be the K3
lattice.

Corollary 2.9. (i) If p £10, then every even lattice S of signature (1, p—1) occurs
as the Néron-Severi group of some algebraic K3 surface, and the primitive
embedding S— A is unique.

(ii} The transcendental lattice of an algebraic K3 surface X with PX)£10 is
uniquely determined by its signature and discriminant-form.

Corollary 2.10. (1) If 125 p =20, then every even lattice T of signature (2, 20—p)
occurs as the transcendemtal lattice of some algebraic K3 surface, and the
primitive embedding T<> A is unigue. :

(i) The Néron-Severi group of an algebraic K 3 surface X with 122p(XNE20
is uniquely determined by its signarure and discriminant-form.

Remark 2.11. The case p(X)=11 is missing from the two corollaries above. In
fact, it follows from a stronger version of Theorem 2.2 proved by Nikulin {[12;
Theorem 1.10.1]) that every even lattice of signature (1, 10) occurs as the
Néron-Severi group of some algebraic K3 surface, and that every even lattice
of signature (2, 9) occurs as the transcendental lattice of some algebraic K3
surface. However, no uniqueness results are known (without imposing ad-
ditional hypotheses).

Proofs. (2.9) By Corollary 1.9, § occurs as the Néron-Severi group of some K3
surface if and only if there is a primitive embedding S—A. Since p=10, we

have
1<3; p—=1<19; HAY<p£22—p-2.

Thus, by Theorem 2.8, there exists a unique primitive embedding S—A. Mo-
reover, by Theorem 2.2 the orthogonal complement T of § (which is isomor-
phic to the transcendental lattice of any K 3 surface whose Néron-Severi group
is 5) is uniquely determined by its signature and discriminant-form.
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The proof of (2.10) is entirely analogous: the inequalities needed are
2<3; 20-p<19; [(A)£224p S22~ (22~p)-2
which hold for 125p520. QE.D.

3. Double covers and involutions

Let X be a compact complex surface. Let 1 be an involution of X with isolated
fixed points @,,...,Q,, and let G be the group generated by 1. Let n: XY be
the quotient by G. Y has ordinary double points at the points B=x(Q,), so that
if o Y— ¥ is the minimal resolution, then the exceptional divisors of y are
smooth rational curves C,=¢~!(P) of self-intersection —2. We call the
induced rational map X -+ Y the rational quotient map.

Let ¢: Z—X be the blowup at the points Q,,...,0, and let E;=¢~1(Q,) be
the exceptional divisors. Then the action of & on X lifts to an action of G on
Z, and Z2/G=Y:

Z—f;—»X

ﬁl n
L
Y—Y

k
Since # is a double cover branched on the divisor €, we get
k i=1
1Y CeNS(Y)
i=1
Conversely, if €\, ..., C, are disjoint smooth irreducible rational curves on a
k

surface with 3 C,e N5(Y), then there is a double cover #i: Z— Y branched on

i=1

K
1Y C. #*(C)=2E, and each E, is an exceptional divisor of the first kind, so
i=1

we may blowdown I E; to recover the surface X,

Let H, be the orthogonal complement of {E;} in H*(Z,Z). and H, be the
orthogonal complement of {C;} in H*(Y,Z). Then H,=H?*(X, Z), and there are
natural maps (cf. [18; Sect. 3])

n*: Hy—»H,=H*X,Z); =, H (X, Z)2H,~H,cH}YZ)
such that
T =2y;  w*m()=x+1*x); (v, ¥)= Aty 1y,

Note also that
Ky )=K,.
Lemma 3.1
7 HAH X, Z)%)y = HY (X, Z)°(2).
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(In other words, =, restricted to H 2(X,Z)° is an isomorphism onto its image
which multiplies the intersection form by 2.)

Proof, If xe H*(X, Z)Y, then
n*m, (X} =x+1*¥{(x)=2x.

Thus, =, restricted to H3X,Z) is an isomorphism onto its image. If
x,, %, e H}(X, E)° then

(1t X, X,)=3(n* n*xl,n*n*x2)=%(2x1, 2x,)=2(x.,%;). QE.D.

Proposition 3.2. Suppose there is an even lattice Lo HYX,Z)® with L=U" Let
M be the orthogonal complement of n,(L) in H (Y, Z) and suppose that discr(M)
=22" Then n,(L) is a primitive sublattice of H*(Y,Z), and = (Ly=U(2)"

If in addition Ty < L, then n, induces a Hodge isomewry . T,(2)5 Ty,

Proof. Note that M* is the minimal primitive sublattice of H 2(Y, Z) containing
m, (L), and that discr{M*)=discr(M) since H (Y, Z) is unimodular. Thus,

discr(m, (L))

22" = diSCI'(JMl) = mj—z

But = (L)=U{2)" by Lemma 3.1, so that discr(m, (L) =2". Thus, (M*:7(L}]
=1, so that = (L) is primitive.
If Ty L, then =, induces an isometry Ty(2)> Ty. Moreover,

n,: HA(X, Z¥ -HX Y E)

preserves the Hodge decomposition, so that this is in fact a Hodge isometry.
QED.

Lemma 3.3 (Nikulin [10; Lemma 3]). Let C,,...,C, be smooth irreducible dis-
k

joint rational curves en a K 3 surface Y, and suppose 1% CeNS(Y). Then k=0,
g, or 16. i=1

Proof. If k>0, let #: X -» Y be the rational quotient map corresponding to the
double cover branched on L C,, and let PeX be the points corresponding to C,.
Then

KooK ) = Hiapl X = BN +k=2x,,(Y —{CH+Ek=2Q24-2k) +k.

Now K,=n*(K,)=0, so that by Theorem 1.5, X is a complex torus or a K3
surface. In the first case, x,,,(X)=0 and k=16; in the second, ¥, (X )—7-24 and
k=8 Q.E.D.

4. Kummer surfaces
Definition 4.1. Let Z be a complex torus of dimension 2, and let 1 be an

involution on Z induced by multiplication by —1 on the universal cover ca. I
n: Z-+Y is the rational quotient by ¢, then Y, which is a K3 surface, is called a
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Kummer surface. 1t has sixteen fixed points on Z, so that Y has sixteen excep-
tional curves. Note that Z is an abelian surface if and only if Y is an algebraic
K 3 surface.

Theorem 4.2 (Nikulin [101). There exists an even, negative-definite rank 16
lattice K, called the Kummer lattice, with the following properties:

(1) discr(K)=2°.

(ii) If Y is a Kummer surface, then the minimal primitive sublatiice of
H?(Y,Z) containing the classes of the exceptional curves on Y is isomorphic to K.

(iii) K admits a unique primitive embedding into the K3 lattice A,

(iv} A K3 surface Y swface Y is a Kummer surface if and only if there is a
primitive embedding K=s NS(Y},

The Kummer lattice was first described by D.B, Fuks (cf. [15; appendix to
Sect. 37). '

Proposition 4.3, Let Y be a Kummer surface, Z be the corresponding complex
torus, n: Z--Y be the rational quotient map, and T, (resp. T;) be the transcen-
dental lattice of Y (resp. Z ). Then

{i} (cf. Nikulin [10; Remark 2]} n, induces ¢ Hodge isometry T,(2)=T,.

(i) QK—E—(qU(Z))3' .
Proof. The Kummer involution acts as the identity on H*(Z,Z)=U?; more-
over, by (42)(i), = (H*(Z,Z)}*=K which has discriminant 2% by (4.2)(i).
Statement (i} now follows immediately from Proposition 3.2, which also tells us

that
Kt= n*(HZ(Z, DH=u2y?
so that

Gy = —dgs = (qU{z])a

(since — gy Eqy— 0 Fquy) QED.
Corollary 4.4. Let Y be an algebraic K3 surface.

(i) If p(Y)=19 or 20, then Y is a Kummer surface if and only if there is an
even lattice T' with T, =T"(2).
(ii) If p(Y)=18, then Y is a Kummer surface if and only if there is an even
lattice T with T,=U(2)®T'(2).
(i) If p(¥)=17, then Y is a Kummer surface if and only if there is an even
lattice T' with T, 2 U(2*®T'(2).
(iv) If p(Y)<17, then Y is not a Kummer surface.

Proof. By (4.2)(iv), Y is a Kummer surface if and only if there is a primitive
embedding K—NS(Y). Since K admits a vnique primitive embedding into A
by (4.2)(i1i), such a primitive embedding K— NS(Y) exists if and only if there is
a primitive embedding T,— K~ = U(2)’. But then there is some e¢ven lattice T
with T, = T"(2) and a primitive embedding T”<U?. The corollary now follows
from Corollary2.6. QUE.D.

Note that when 17 < p 20, every even lattice of the appropriate signature
occurs as the transcendental lattice of a K3 surface, by Corollary 2.10. Corol-
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lary 4.4 thus shows that Kummer surfaces are rather rare among K3 surfaces
with such Picard numbers.

5. Nikulin involutions

Definition 5.1. An involution : on a K3 surface X is a Nikulin involution if
*(w)=w for every we H*%(X).

Lemma 5.2 (Nikulin [11; Sect. 5]). (i) Every Nikulin involution has eight isolated
fixed points.

(i) If =: XY is the rational quotient by a Nikulin involution, then Y is a
K 3 surface.

Definition 5.3. The Nikulin lattice 1s an even lattice N of rank 8 generated by
{c}® | and d=1Zc,, with the bilinear form induced by
(ci,c)= —20;.
Lemma 5.4. (i) The discriminant of N is 2°.
(i) If X is a K3 surface with a Nikulin involution 1, and X-»Y is the rational
guatient map, then the minimal primitive sublattice of H*(Y,Z) containing the
classes of the exceptional curves on Y is isomorphic to N.

Proof. (i) If N’ is the sublattice of N spanned by {c], then discr(N}=2% and

[N:N"]=2, so that

, discr(N’)

dlscr(N)=W= 6
(i) Let C,,..., Cy be the exceptional divisors of X -+ Y. Since X-+Y is the

rational quotient by an involution, D=3ZCeNS(Y) as well, so that

N NS(Y)= H3(Y,Z). To show that the embedding is primitive, suppose that

C=Zm,C.eNS(Y) with me®. Then (C, ()= —2meZ, so that

C=Y 3C (modN')

el

for some J<={1,...,8}. But by Lemma 3.3, #({)=0 or &; if #(H=0, then
CeN’, while if 3#(/)=8 then C=Dmod N’ so that CeN. Q.E.D.

Definition 5.5. Let X be a K3 surface. The Weyl group of X is the subgroup
W(X)c Aut HX(X,Z)

generated by reflections in all elements of NS(X) of square-length — 2.
The following theorem of Nikulin is a consequence of the global Torelli
theorem for K 3 surfaces ([15, 1, 17, 7]):

Theorem 5.6 (Nikulin [11; Theorems 4.3, 4.7, 4.151). Let X be a K3 surface, let
G=Z2Z be a subgroup of O(H(X,Z)), and let S;=(H*X, Z)%)'. Suppose that
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(i) the lattice S is negative definite,

(i1} no element of S, has square-length —2, and

(iii) §;<=NS(X).

Then there is a Nikulin involution ; on X and an element we W(X) such
that

F=wgw!

where g is the generator of G.

As a consequence, we get the following

Theorem 5.7. Let X be a K3 surface such that Eg(—1)?=NS(X ). Then there is
a Nikulin involution 1 on X such that ¥ n: XY is the rational quotient map,
(i} there is a primitive embedding NBE(—1)~NS(Y),
(i) =, induces a Hodge isometry T,(2)x Ty
(i}) N®Ey(—1) has discriminant-form (Gua)’.

Proof. Let {cf} (i=1,2; 1=j<8) be a basis of Eg(—1=E(—-1)®EJ(—1)
such that ¢feE(—1@(0), c?e(0YDEL(—1), and for each fixed 7, {¢i} forms a
basis of Ey(—1) whose matrix Is the negative of that in (1.2)(ii). Let
¢: Eg(~1)*SH*(X,Z) be the embedding, and define an action of
G=Z/2Z on HYX, Z) as follows: the generator geG acts as

g )=0(c]):  g(dlch=e(ch;
gle)=e, for all ecd((Ey{ = 1)%)~.

(This is well-defined since the embedding ¢ is primitive, and E(—1)° is
unimodular) S;=(H*(X,Z)%)"* is generated by {plc])—od(chH), so that
Ss e @(Eg(~ 1)) NS(X) and S¢=Eg(—2). Since E, is an even, positive de-
linite lattice, S; is a negative-definite lattice which contains no element of
square-length — 2. Thus, by Theorem 5.6, there is a Nikulin involution : on X
and an element we W(X) such that *=wgw~! For xeE (—1)% let

Then y: Eg(—1)*NS(X)c H*X,Z) is another primitive embedding, since
W(X) preserves NS(X). Moreover,
le N =uic?); WA =(c});
*(e}=e, for all ey (Eg(— 1)*)*.
Let n: X-+Y be the rational quotient map. The minimal primitive lattice

containing the exceptional divisors Spans a copy of N<>NS(Y). Moreover, the
classes m, (¥(c])), ..., m, ¥((cl) are orthogonal to N. Now by the formulas in

Sect. 3,
(g i) o prilet N =mn*n, pife R M2 ()
WD+ (e wich+ *yicd))
Hef e+ ed)

(¢}, ci)

Il

1l
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since {c/} and {c}} have identical bilinear form matrices. But this means
that {m,¥((c})} also spans a copy of Ey(—1), so that N@Eg(~1)—~NS(Y).
Since Eg(—1) is unimodular and N is primitively embedded, the embedding
N@E(~1)>NS(Y) is also primitive,

Let L be the orthogonal complement of W(Ey(—1)) in HX(X,Z). Then
L=U> Since L>H(X,Z)% and disct(N@®Eg) =25 by Proposition 3.2, T, in-
duces a Hodge isometry T,(2)=T,, and n.(L) is a primitive sublattice of
H*(Y,Z), isomorphic to U(2)".

We thus see that

INaE, = —QR.(L)z(qU(Z))Bv Q.E.D.

6. Shioda-Inose structures

Definition 6.1. A K3 surface X admits a Shioda-Inose structure if there is a
Nikulin involution 1 on X with rational quotient map n: X -+ ¥ such that ¥ is a
Kummer surface, and = » induces a Hodge isometry T, (2)=T,,.

Remark 6.2. If X admits a Shioda-Inose structure, let Z be the complex torus
whose Kummer surface is Y. This gives a diagram

of rational maps of degree 2. Tx(2)=T, by definition, and 12)=T, by Pro-
position 4.3. Thus, this diagram induces a Hodge isometry T, =T,

Theorem 6.3, Ler X be an algebraic K3 surface. Then the Jollowing are equiva-
lent:

(1) X admits a Shioda-Inose structure. ‘

(i) There exists an abelian surface A and a Hodge isomerry T,=T,.
(i) There is a primitive embedding Ty— U3,
(iv) There is an embedding Eg(~-1)2<NS(X).

Proof. (i)=(ii) follows from Remark 6.2; the complex torus Z is an abelian
surface because the Hodge structure T, =Ty is polarized.
(}=(iii): If T,=T,, the natural primitive embedding T, —~H*A4,Z)~U?
induces a primitive embedding T, U3,
(lii}=(iv): We extend the given primitive embedding ¢: T,*=U?> to an
embedding
D0 Ty =U@E(—1)Y = A

Since X is algebraic and p(X)>17, by Corollary 2.10, the lattice T, admits a
unique primitive embedding into the K 3 lattice A. Thus, the embedding ¢@0
is isomorphic to the canonicai embedding; in particular,

Eg(~ 1P T =NS(X).
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(iv)=>(i): By Theorem 5.7, since Eg (—1)?<+NS(X), there is a Nikulin in-
volution 1 on X such that, if z; X»Y is the rational quotient map, then = *
induces a Hodge isometry Ty(2)=T,, and there is a primitive embedding
N@Eg(—1)—NS5(Y). Note that Y is an algebraic K3 surface and p(Yyz=17.
Hence, N5(Y) is uniquely determined by its signature and discriminant-form
{Corollary 2.10). Furthermore, NGE,(—1) and the Kummer lattice K have
isomorphic discriminant-forms (by (4.3)(ii) and (5.7)(iii)). Thus, by Lemma 2.3,
the primitive embedding N@E(—1)~~NS(Y) determines a primitive embed-
ding K== NS(Y). But now by Theorem 4.2(iv), ¥ is a Kummer surface. Q.ED.

We should point out that the “algebraic™ hypothesis is used in an essential
way (in guaranteeing the uniqueness of the lattice NS(Y), given its signature
and discriminant-form). In fact, the generic K3 surface with Ei(—1)? in its
Neéron-Severi group has a Nikulin involution of the right type, but the quotient
is not Kummer; conversely, the generic Kummer surface has no double cover
which has a Nikulin involution of the right type. This happens because the
lattices K and N@®E,(~1) are not isomorphic, even though they have the same
signatures and discriminant-forms.

Corollary 6.4. Let X be an algebraic K 3 surface.

(1) If p(X)=19 or 20, then X admits a Shioda-Inose structure.

(i) If p(X)=18, then X admits a Shioda-Inose structure if and only if
L,=UgT.

(i) If p(X)=17, then X admits a Shioda-Inose structure if and only if
T,xU*@T.

Proof. This follows immediately from Theorem 6.3 and Corollary 2.6. Q.E.D.

Corollary 6.4 in the case p(X)=20 was first proved by Shioda and Inose
[18], using somewhat different methods.

7. Remarks on a conjecture of Takayuki Oda

In [13], Takayuki Oda made the following

Conjecture. Let X be an algebraic K3 surface, and suppose that either p(X)=18,
19, or 20, or that p(X)=17 and the discriminant of the intersection-form on
NS(X) is a square. Then there exists an abelian surface A and a correspondance
between X and A which induces a Hodge isometry

(@QHT,Q).
Corollary 7.1. Oda’s conjecture holds whenever p=19 or 20.

Proof. By Corollary 6.4, X admits a Shioda-Inose structure in this case. The
Shioda-Inose structure induces such an isometry which is defined over
Z QED.
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Remark 7.2. The following hypothesis must be added to Oda’s conjecture:
“There exists an embedding of Q-lattices

(V= @R).”
Proof. Note that since
(T @Q)—H*4,Q)=(U°3Q),
this hypothesis must hold for any K3 surface satisfying the conjecture. How-
ever, there exist K3 surfaces with p=17 or 18 which do not satisfy this
hypothesis: if T is a lattice of signature (2, 2) which does not represent zero
over @), then T®® has no such embedding, by Corollary 2.7. On the other

hand, by Corollary 2.10, T is the transcendental lattice of some K3 surface
with Picard number 18. (There is a similar construction for p=17.) Q.E.D.

Remark 7.3. When p=17, the hypothesis in Oda’s conjecture that the discrim-
inant of the intersection-form on NS(X) be a square is unnecessary.

Proof. In case p=17, X admits a Shioda-Inose structure if and only if T2
U@ T, where T' is a negative even lattice of rank 1; such an X will satisfy the
conclusion of Oda’s conjecture. On the other hand, any positive even integer
2k defines a negative rank 1 even lattice T7'={ -2k}, and the lattice

T,=U2@(—2k)
oceurs as the transcendental lattice of some algebraic K3 surface X by Corol-
lary 2.10. But now,
discr(NS(X )= —discr(Ty)= —discr(T,) =2k,
which need not be a square. Q.E.D.
We thus propose the following

Modified conjecture. Let X be an algebraic K 3 surface, and suppose that there is
an embedding ¢ (T, @Qy—(U*@Q) of Q-larzices. Then there exists an abelian
surface A and a correspondance between X and A which induces a Hodge

isometry .
(T;@Q)>{T,2Q).
Remark 7.4. The Hodge conjecture implies this “modified conjecture™

Proof. Let T=U>n¢({T,@®). By Corollary 1.9(ii), there is an abelian surface
A such that T=T,. ¢ induces an isometry

(T;@Q)>(T,8Q)

H>%(X x A\n HY(X x A, Q)

which gives a class in

(lying in the Kiinneth component H(X,Q)@H*(4,@Q); cf. [14]). But the
Hodge conjecture asserts that such a class is given by a Q-linear combination
of irreducible algebraic cycles; one of these will be a correspondance inducing
the given isometry. Q.E.D.



On K 3 surfaces with large Picard number 121

References

1.

2.

11.
12,
13,
14,
15.
16.
17.
18,
1%

20.
21

22,

Burns, D., Rapoport, M.: On the ToreHi problem for Kihlerian K3 surfaces, Ann. Scient. Ec.
Norm. Sup. 8, 235-274 (1975)
Hodge, W.V.D.: The topological invariants of algebraic varieties. Proc. Intern. Cong. Math.
Cambridge 1, 182-192 (1950)

. Kneser, M.: Rlassenzahlen indefiniter quadratischer Formen in drei oder mehr Verinderlichen.

Arch. Math. (Basel) 7, 323-332 (1956)

. Kodaira, K.; On the structure of compact complex analytic surface, I. Amer. J. Math. 86, 751-

79% (1964)

. Kulikov, V.: Epimorphicity of the period mapping for surfaces of type K 3. (in Russian) Uspehi

Mat, Nauk. 32, {4) 257-258 (1977)

. Looijenga, E.: A Torelli theorem for Kihler-Einstein K3 surfaces. Lecture Notes in Mathe-

matics, vol. 894, 107-112. Berlin-Heidelberg-New York: Springer 1981

. Looijenga, E., Peters, C.: Torelli theorems for Kihler K3 surfaces. Compositio Math. 42, 145-

186 (1981)

_Milnor, J.: On simply connected 4-manifolds. Symposium Internacional de Topologia Alge-

braica, La Universidad Nacional Auténoma de México y Ja UNESCO pp. 122-128, 1958

. Namikawa, Y.: Surjectivity of period map for K3 surfaces. Classification of algebraic and

analyiic manifolds, Progress in Mathematics, vol. 39, 379-397, Boston-Basel-Stutigart:
Birkhduser 1983

. Nikulin, V.: On Kummer surfaces. [zv. Akad. Nauk SSSR 39, 278-293 (1975); Math. USSR

Izvestija 9, 261-275 {i975)

Nikulin, V.: Finite groups of automorphisms of Kihlerian surfaces of type K3. Trudy Mosk.
Mat. Ob. 38, 75-137 (1979); Trans. Moscow Math. Soc. 38, 71-135 (1980)

Nikulin, V.: Integral symmetric bilinear forms and some of their applications. Tzv. Akad. Nauk
SSSR 43, 111-177 (1979); Math. USSR Izvestija 14, 103-167 {1980)

Oda, T.: A note on the Tate conjecture for K3 surfaces. Proc. Japan. Acad. Ser. AS6, 296-300
(1980)

QOkamoto, M.: On a certain decomposition of 2-dimenional cycles on a product of two
algebraic surfaces. Proc. Japan Acad. Ser. AS7, 321-325 (1981)

Piateckii-Shapiro, 1, Shafarevich, LR.: A Torelli theorem for algebraic surfaces of type K3. Izv.
Akad. Nauk SSSR 35, 530-572 (1971); Math, USSR Izvestija §, 547-587 (1971)

Shafarevich, LR., ed.: Algebraic surfaces. Proc. Steklov Institute of Math, 75, (1%65)
Shioda, T.: The period map of abelian surfaces. J. Fac. Sci. Univ, Tokyo 25, 47-59 (1978)
Shioda, T, Inose, H.: On singular K3 surfaces. Complex analysis and algebraic geometry:
papers dedicated to K. Kodaira. Iwanami Shoten and Cambridge University Press 1977,
pp- 119-136

Siu, Y.-T.: A simple proof of the surjectivity of the period map of K3 surfaces. Manuscripta
math. 35, 311-321 {1981)

Siu, Y.-T.: Every K3 surface is Kdhler. Invent. math. 73, 139-150 (1983)

Todorov, A.: Applications of the Kéhler-Einstein-Calabi- Yau metric to moduli of K3 surfaces.
Invent. math, 61, 251-265 (1980)

Wu, W.T.: Classes caractéristiques et i-carrés d'une variéte. C.R. Acad. Sci. Paris 230, 508
(1930)

Oblatum 5-V-1983

Added in proof

In a recent preprint entitled “On the moduli space of vector bundles on K3 surfaces and its
application to the Hodge conjecture™, S. Mukai has shown that if X and Y are algebraic K3
surfaces with Picard number at least 11, and if ¢: T, ® Q> T, ®Q is a Hodge isometry, then there
is some integer n such that n¢ is induced by an algebraic cycle on X x Y. The “modified
conjecture” in Sect. 7 follows from this (combined with Theorem 6.3), by an argument similar to
(7.4



