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Chapter VI
THE CLEMENS-SCHMID EXACT SEQUENCE AND APPLICATIONS

David R. Morrison™

Let X* » A" be a smooth family of complex varieties over the
punctured disk, and let X - A be a completion to a proper family over the
disk, with K&hler total space. The Clemens-Schmid exact sequence re-
lates the topology and Hodge theory of the central fibre of such a map to
that of a smooth fibre by means of the monodromy of the family ¥* - A*.
This sequence yields rather strong restrictions on the monodromy of such
a family, and much information about the cohomology and monodromy of
the smooth fibre can be derived from the central fibre alone. In this
exposition, we have chosen to separate the topological and Hodge theoretic
aspects of the sequence, for two reasons. The first is that setting up this
exact sequence requires a great deal of linear algebra; by presenting a
topological version first {and postponing the discussion of mixed Hodge
structures) we sidestep certain technical cemplications until the reader
has been (we hope) sufficiently motivated to wade through them. But a
second, more important, reason is that many of the applications of the
Clemens-Schmid sequence depend only on this topological version (i.e.
depend on the weight filtrations and not the Hodge filtrations), a fact
which is often ignored in the literature. It should be pointed out that the
proof (which we do not give here) does not appear to separate into topologi-
cal and Hodge theoretic parts. '

Our main references have been [2], 4], [8) and [11]. The citations in
the text are intended as guides to the reader, and do not pretend to assign

proper credit to the many who have worked in this subject.

*Partially sypported by the National Science Foundation.
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§1. Semistable degencrations

Let A denote the unit disk. A degeneration is a proper flat holomor-
phic map 7:% - A of relative dimension n such that X, = 7 Ht) isa
smooth complex variety for t 40, and % is a Kihler manifold, A de-
generation is semistable if the central fibre X is a divisor with (global}
normal crossings; in other words, writing 350 =X Xi as a sum of irreduci-
ble components, each X, is smooth and the X;’s meet transversally so

that locally = is defined by

to= X Xy Xy
The fundamental fact about degenerations is the

SEMISTARLE REDUCTION THEOREM (Mumford [31). Given a degenera-
tion 7' % > A there exists a base change b:A > A (defined by t » tN

for some N), a semistable degeneration ¢:9) > A and a diagram

P-——-—>F —— X

W
A—L A
such that £:9 —- Xy isa bimeromorphic map obtained by blowing up and

blowing down subvarieties of the central fibre.

With this theorem in hand, statements about degenerations which are
invariant under blowups, blowdowns, and basechange can of course be
proved by considering the special case of semistable degenerations.

Given a semistable degeneration, one can give a fairly precise de-
scription of the cohomology of its total space X. The first step is to
construct a retraction r: X - EO which induces isomorphisms
r* (X, Q) = H(X, Q) and 1, H (X.Q) > Hp (¥4, Q). (The details
of this construction can be found in Clemens [1] or Persson [8].) We then
describe the cohomology of X, by means of a Mayer-Vietoris type spectral

sequence, as follows.
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Let
Xia"'ip = Xioﬂ--- n Xip s

define the codimension p stratumof X, as

i
. ; o 'p
10<---<1p

{disjoint union), and let ' x{P] » X be the natural map. Choose an
open cover 1l of a neighborhood of X, in X such that

(1) foreach U <1, rr]U is defined by
t = X, e Xy

in suitable local coordinates
(2 HUNE,Q = AY¥,Q
@ i an, - Bxally.
Let EQ'? = €% (o '(1),Q) and define differentials
d: Eg,q 5 Eg'q“ the Cech coboundary

o :Eg’q - Eﬁﬁl'q the combinatorial coboundary induced by

. = 1)@ T
) BHVOX; o ) g CORVAX 5 gD

THEOREM. The spectral sequence with E, term as above and
PQ _ 3
)% - yxlelg)

degenerates at E,, and converges to H*( x,0.
Proof. Consider first the opposite spectral sequence

©pgP,d _ 4P
o ~ Fo -




At :

2%

X
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It is easy to check that the complex 0 - ]_“(151\], 0)! 2, I( [l’lv, )] o,
has homology (VN X,,Q) (in degree zero only), for all open sets V
satisfying (1}. Thus,

CPINZ,Q) for g =0

opp.q
Ey" =
0 for q 40
and
HP(Z,,Q) for q =0

OPEP-4 _ OPEg’q _
0 for g 0

which proves the convergence.

To prove the degeneration of the spectral sequence, we introduce its
de Rham analogue. Let DREg,q = Aq(.i[P}) be the complex C™ g-forms
on APl with differentials

d: Aq(i[P]) S Aq+1(fx[P]) the exterior derivative
5. ad¢ply L a9 XIP1Y) jnduced by (%)

We have DREI;’q = H%R(X[P]) , and it is proved in Griffiths and Schmid

[4, p. 71] that this spectral sequence degenerates at E the essential

point is the ‘ ‘principle of two types’’ for forms on a Kél:iler manifold.
This in fact implies that the original E[:’q degenerates at E,, as we
sketch below.

The differentials d, on Eil)’q, E‘;’qac, and

by the combinatorial formula (*). We thus get a commutative diagram for

DREP;’q are all defined

T 2 1 d
Ef,q r . Ef,qﬂ
e
EPdeC ' P g
1’4 d 114
1
DREF,q r DREE,(H

which implies the degeneration of Ef’q. q.e.d.
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We use this spectral sequence to put a filtration, called the weight
filtration, on Hm(j(},Q) (and hence on H™(X,Q) ) as follows: define

*’
Wi = @ qu
9k

and let W (H™) be the induced filtration on cohomology. (This is not

the usual filtration associated to a spectral sequence, but is more con-

venient here for technical reasons.) Notice that
0 C W,H™) CW,HT) C - CW (HT) = HT .

Thus, letting Gry = Wy, /W, _, denote the graded pieces, we have
Gr (H™ = EP KK, and Gr ™) =0 if k<0 or k>m.

We also put a weight filtration on homology H_ (X, Q) (or Hm(.f,Q) h]
by duality:

W Hy) = Ann(wk_l(Hm)) ={h meKWk._l(Hm),h) —o}.

With this definition,

Gr(Hy) = (Gr  (H™)™

so that Gr (H, ) =0 if k<-m or k>0.

We conclude this section with an alternate description of the Oth
graded piece of the weight filtration. Define the dual graph I" of X, to
be a simplicial complex with one vertex P; for each component X; of

X, such that the simplex <Pi(0)’ -, Pi(k)> belongs to I' if and only

if X0 "'igey # @ Then B> - 1OQPh), so that nOA0H 2,

Ho(ﬁh]) ﬂa—w «+ is the Cech complex for T ; thus GrO(Hm) = E?’O &
HR(TD.

§2. The monodromy weight filtration
In this section and the next, all cohomology groups have () coeffi-

cients unless otherwise specified.
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Let 7:% > A be a degeneration, and 7*:X* > A* be the restriction
to the punctured disk. Fix a smooth fibre ¥;. Since 7 isa C*®

fibration, nl(A*) acts on the cohomology Hm(ﬁt). The map
T: Hm(it) i Hm(‘%t)

induced by the canonical generator of wl(A*) ig called the Picard-

Lefshetz transformation. We have the

MoNoDROMY THEOREM (Landman. {7]).
(1) T is gquasi-unipotent, with index of unipotency al most m. In

other words, there is some k such that

(Tk_I)m+1 - 0.
(2) If w:% > A is semistable, then T is unipotent {k=1).

Thanks to this theorem, we may define the logarithm of T in the

semistable case by the finite sum
N=log T« (T-I) - %— (T-1)2 +.£T (T-D3 - - .

N is nilpotent, and the index of unipotency of T coincides with the
index of nilpotency of N ; in particular, T =1 if and only if N =0.
Associated to this nilpotent map N with N1 -0 is an increasing

filtration of (QFsubspaces

0C W, CW Cor CW = Hm(Et)

called the monodromy weight filtration, which is defined inductively as
follows: first let Wy =Im N™ and W,, . =Ker N™. Now fix some [ <m;
if

0CWp { CWop pC Wy = Hm(xt)

have already been defined in such a way that Nm4+1(w2m_) C Wp_,, then

we define
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Yoy | - Im(N™~? )

Womp/Wg_q

= Ket(Nm_£|w

W,
2 am-f /W1

m—?—l/w[’ )

-1
and Wp, W, o , tobe the corresponding inverse images. Notice that
We/Wp | C W, §.1/Wp_, sothat WpC Wom. ¢ 1+ Clearly,
Nm"l(Wzm_Q_l) C Wp, so that the inductive hypotheses are satia_;fied.

We collect below the important linear algebra facts about this f{iltra-
tion; these follow from the existence of a representation of S$£(2; Q) on
H extending the action of N. (For indications of proof, see Griffiths
{3, p. 2551.)

PROPOSITION. Let K = Ker N, Gry (H) = Wy /Wy _,, Gri(K) = (W NK)/(W, _,NK)
(1) N(wp) < Wi o
(2) N(Wy) =ImN) NW_,
(3) N¥:Gr () 25 Gry ((H)
(4) Properties (1) and (3} uniquely determine the filtration.
(5) If k<m,
k/2
Gry(H) = @[ai 0] Gy, (K)

®) If 0<k<m, NK: Hm(it) - Hm(xt) is the zero map if and only

if Wy 4 =0; tfandonly if W, | NK=0.

7) Gr, (H a Gr (K).
(1) Gry( )/Im(N;Grmu(H)-»Grm(H)) m

§3. The Clemens-Schmid exact sequence

Let £ +A be a semistable degeneration, &t a fixed smooth fibre,
and i:¥,CX the inclusion. We dencte H™(%)) by Hﬁm, H™(%) =
H(X ) by H™, and H_(%¥) = H_ (¥ by H_. Hﬂm, H™, and H_
all carry filtrations which we have called weight filtrations; we define a
weighted vector space to be a (J-vector space H together with an in-

creasing filtration of ()-subspaces
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0C... C Wk(H) C Wk+1(H) Cc.-CH

called the weight filtration. A morphism of weighted vector spaces of
type (r,1) is a linear map ¢:H - H" such that AW (H)) - Wk+2r(H’) n
Im ¢.

The Clemens-Schmid exact sequence studies the homomorphism
N: H;‘;m > H;‘;m (which is a morphism of weighted vector spaces of type
(-1,1) by property (2) of the monodromy weight filtration). The first

piece of the sequence is the

LOCAL INVARIANT CYCLE THEOREM, The sequence

{*
pm e Noge
lim lim
is exact. In other words, all cocycles which are invariant under the

monodromy action come from cocycles in X .

However, the Clemens-Schmid theorem says more. Let

piHy , () » H(E, 3%)

and

Py Hm( xt) 4 H2n—m(£t)

be the Poincaré duality maps, and define a:H,  , = H™ as the

composite

H (&) 2 ™ x, 9%) — HT(X)

2n+2-m

and B8:H" -H

lim on.m @5 the composite
i -

i

m Pt *
HA XY — Hyp (2 — Hyy (XD

We can now state

CLEMENS-SCHMID I. The maps «, it, N, 8 are morphisms of weighted
vector spaces of types (n+1,n+1), (0,0), (-1,-1} and {-n, n) respec-

tively, and the sequence
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G.Hm__ii]_{m N m 'BH

a ..m+2
2n+2-m tim 2 O 7 Hopm — HTT —

_ LH
1s exact.

Notice that our definition of morphism included strictness (with a
shift of indices) of the weight filtrations; thus, this exact sequence in-

duces exact sequences of the filtered and graded pieces.

COROLLARY 1. Let K™ denote KeN:H™ -HM ). Then
lim lim
W (H™ = W (K™) for k <m. In particular, W, (H™) =W (K

as weighted vector spaces.

Proof. We only need to check that Wy, (H,o - ) =0 for k<m, or
antz-m) =0 for all k <m. But in Section

1 we saw that Grj(Hg) =0 # j<-F; clearly k-2n-2 < —(2n+2-m).q.e.d.

equivalently, that Grp_,, ~(H

Properties (3) and (5) of the monodromy weight filtration show that the
m

lim
the above corollary allows us to determine all but one of those pieces in

graded pieces of H can be recovered from the graded pieces of Ker N;

terms of the weight filtration on H™.

COROLLARY 2. For k >0, Nk:Hﬁlm ~HM s the zero map if and
only if Wm_k(Hm) = 0. In particular, N®*! |s always zero, and N™ =0
if and only if H™(I')) = 0.

Proof. Property (6) of the monodromy weight says that Nk =0 if and
only if wm*k(Hﬂm) = 0. By the previous corollary, this is true if and

only if Wm,k(Hm) = 0. The second statement follows from the isomorphism
W,H™) = Gr(H™) = g™(T')). g-e.d.
COROLLARY 3. The following sequence Is exact

m-2 m m
0-Gr, ,K = Gry on oHon o 2 Grp HY 5 Grp KT 5 0.
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Proof. This follows from the strictness of morphisms in the Clemens-
Schmid sequence. The only thing that requires checking is
K"=2 |

Ker(Gr H % Gr, HM = Gr

m—2n-2""2n+2-m m—2

But this kernel is isomorphic to

Gr,_ HM 2
m—2 1im/ m-2 N m—2
Im(Gry HYE Grpy_gHp— )
which, by property {7} of the monodromy weight filtration, is isomorphic to
Grmﬁsz_2 . g.e.d.

Corollary 2 allows us to compute the index of nilpotency of N from

Hm(xo), and Corollary 3 (together with induction) enables us to compute
m

lim
some special cases in the next section.

the remaining graded piece of H We shall apply these results in

§4. Applications
(a) First cohomelogy groups
Since H2n+1 = H2n+1(?)(0) =0, the Clemens-Schmid sequence becomes

0 —u!'—nu! Nyt o,
lim lim

Hence, Ket N = H! as weighted vector spaces. We compute the graded

pieces
GrH!. = GrgHL = Gr ' = HY(D)

27 lim 0" 1im
GrlHllim = Gr,H' o Kera}(X[0) S ity |

If we let @ = dim Grll-[1 , then

b, (%) = @+ 2n!(TD

N=0<hi(I'h=0.
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{b)} Degenerations of curves

The above analysis implies that a semistable degeneration of curves
has infinite monodromy if and only if there are cycles in the dual graph of
the central fibre (a classical result). The typical picture of such a de-

generation is

in which the dotted cycle on ¥, has become a cycle in the dual graph.
In the case of curves, @ =dim Hl(?I[O]) =2 3 g(X;), so that an

alternate criterion for N = 0 is that g(%,) = 2 g(X;).

(¢) Degenerations of surfaces

Since N=0 on H?

lim’ the Clemens-Schmid sequence for H? breaks

into two pieces:

= dim Ker(Hl(i[o]) - Hl(‘.’xh])) as above,

=
I

q = ;—hl(jf[o]) the sum of the irregularities of the components

g = %—hl(ﬂ.h]) the sum of the genera of the double curves.

The Oth and lst graded pieces of H12im can be computed by Coroflary 1
of Section 3:
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'

Gr ;1>

2 2
HE = GrgH® = (D)

Gr,H? = Gr,K? = Gr H? _or_Hlf)C[I]/ _
1im 1 1 (A meattoly Lyptafil,

Thus,
: 2 _ w12
dim GrQHlim = h*(|T'D)

i 2
dim GrlHlim

P -2q+2
and we get the following

MONODROMY CRITERIA.
(1) N=0 on Hlmc:)hl({l"{):ﬂgbl(xt):@.

li
(2) N*=0 on HL <=hn%(I'h=0.
(3) N=0 on Hfim@bhz(ﬁ‘l):O and ®+2g =2q.

2
lim
Betti numbers of the smooth fibre, the easiest way is to note that

Computing Gr,H is somewhat more difficult. If we know the

_ di 25 oa 2 94 2
b,(%,) = dim Grzl-l1im + 2 dim GrlHlim i 2 dim GrOHlim

s0 that

dim G HE = by(X,) - 20 1 49 - 4g - 20*(T)) .

To compute it directly (which will vield an expression for b, (¥} ) we

use

Gr_H, = GrHh* = Al

-4
Gr H? = Ker12(X[0}y , gz xithy

together with Corollary 3 of Section 3 to get

dim Gr,K* = h%(|I]) - #1X;} + dim Ker(Hz(f’I[O]) > HZ(SI[I]))
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and hence

dim Grzﬂﬁm = k() + 1%

'y - #iX,4
+ dim Kera2XL0h . w2t {tly |

{d) Degenerations of K3 surfaces
We Will illustrate the monodromy critetia for surface degenerations

with K3 surfaces. We start with the

THEOREM (Kulikov {6], Perssonr and Pinkham [9]). A semistable de-
generation of K3 surfaces is birational to one for which the ceniral fibre
&70 is one of three types:

Typel. X, is a smooth K3 surface.

Type ll. Xy5=X,UX,U--UXp ;. X, meets only X _,, , and each
X0 Xg1
for 1<a<k, X, isruledwith X NX, , and X 0OX  sections of

is an elliptic curve. X and Xk+1 are rational surfaces, and

the ruling.
Type HI. All components of X, are rational surfaces, X; N (U Xj) is

. J#F1
a cycle of rational curves, and |T'| =82,

We now apply the monodromy criteria in each case:
Typel. X,=X is regular,sc q=0=0. EE[I] =@ so g=0 as well;
II"| is a point, so hZQFD =0 and we conclude N =0.

Type . '] =10,1] so that h'(|['}) = h*(I[']) = 0. Since b (X, =0,
we conclude @ =0.

The components XO and Xk+1 are regular, while the Xa for
1 < a <k have irregularity 1. Thus, q = k. The double curves all have
genus 1, sothat g=k+1. Hence, ® - 29+2g =2 + 0 sothat N* =0
but N 4 0. The monodromy weight filtration looks like:

Type HI. h%(|I'|) =1 + 0 so that N? + 0. To compute the rest of the
weight filtration, note that ® = bl(ft)—Zhl(\ﬂ) = 0; all the components
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are rational so that g =0, and all the double curves are rational so that
g =0. Thus, dim G1-1H11irﬂ =0 and the monodromy weight filtration lecks
like

Q1C01CQ21C021C022.

85. Mixed Hodge structures

The Clemens-Schmid sequence contains more information than the
topological version presented in Section 3; to explain this, we must intro-
duce mixed Hodge structures.

A mixed Hodge structure is a lattice H,, together with an increasing

Z

filtration W, = Wm(H) (called the weight filtration) of HQ = HZ % Q.

and a decreasing filtration FP = FP(H) (called the Hodge filtration) of

H = HZ % C, such that the induced Hodge filtrations on Gr =W, /W _;

define a Hodge structure of weight m ., More precisely, if we define

FP(Gr ) = W NFOW_ NFP
then
Gr = FP(Gr ) ® F™ PYY(Gr )
for all p.
A morphism of type (r,t) between two mixed Hodge structures HZ ,
W, (H), FPH) and H'Z,Wm(l-l'), FP(H) is a (Flinear map
‘M. - H;
#:Hg ~ Hg
such that
SO () C W_,, (H)
H(FP(H)) C FPH(HY) .

Notice that such a morphism restricts to a morphism of type (r,1) between
the weighted vector spaces {HQ, Wm(H)l and be, Wm(H')i {using fact (1)

below for strictness).
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We collect below some linear algebra facts about mixed Hodge struc-

tures: proofs can be found in [4].

PROPOSITION.
(1) A morphism of mixed Hodge structures Is strict with respect to

both filtrations; in other words,
SOLE) = W, () N Im &
HEPH)) = FPYH) NIn & .

(2) if ¢:H, -H,, isa morphism of mixed Hodge structures, then

Q 0

the induced weight and Hodge filfrations define mixed Hodge
structures on Ker ¢ and Coker ¢.

3) If HZ carries @ mixed Hodge structure, its dual H >IC:Hom(HZ, )

Z

inherits a mixed Hodge structure with filtrations

W_ (H*) = Ann(Wy_,(H))

FPMHY = Ann(FPTYH)) .

Each of the weighted vector spaces occurring in the Clemens-Schmid
sequence actually underlies a mixed Hodge structure. As lattices, we
take the integral cohomology modulo torsion; we need only define the
Hodge filtrations.

For the cohomology of io, we describe the mixed Hodge structure

by means of the spectral sequence
PRekL _ Akl = w*X,,0
introduced in Section 1. Define

FP(Ak;E) - @ Hr,ﬂ—r(fx[k])

Pp

as a filtration on the E, term. This induces filtrations in the E, terms

and on H*(%O,C); on the E; term,
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k,f £ k
]:)RE1 = HDR('GX[ ])

we get the usual Hodge filtration. Furthermore, the first differential d1

gives a morphism of Hodge structures; thus,

WF(Hm)/w Lo DRE?— £f
p_g (H
inherits a Hodge structure as well, so that H*(xo, C) carries-a mixed
Hodge structure. This is a special case of a theorem of Deligne that
every variety carries a canonical functorial mixed Hodge structure.

For the monodromy weight filtration, we let #:% - A be a semistable
e2niz

degenetation as usual, and let :§ » A*, f(z) = , be the universal

cover. For each z ¢}, there is a canonical isomorphism of H™(n~ }(£2)))

with our fixed group H?i]m = Hm(irt) . In particular, there are Hodge filtra-
tions FP(z) on Hirilm with the property that TFP(z) = FP(z +1).

THEOREM (Schmid [10]). The Iimit

FP = lim exp(~=N)FPz)

oo
Im{z)o0

exists, and the filtrations FP and Wk(Hi'i‘m) define a mixed Hodge struc-

ture on H;[ilm , called the limiting mixed Hodge structure. Furthermore,
N: Hirilm - Hili]m is a morphism of mixed Hodge structures of type (-1,-1).

We can now state the Hodge theoretic version of the Clemens-Schmid

sequence:

CLEMENS-SCHMID 1Il. The morphisms in the Clemens-Schmid sequence

are morphisms of mixed Hodge structures (of the appropriate types).

§6. Further applications
(a) Degenerations of surfaces
We represent the limiting mixed Hodge structure on Hfim pictorially

as follows
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H2:2 Gr,
2.1 g2 Gr
3
y2.0 gt g2 Gr,
yi.o Ho 1 Gr,
uo.0 Gro

so that

Fl/ , = H!%ullen! 2
F

H® 0Ol 0.2 |

W

Fl/
FI
Since N:H%! = ygl:0 gnd N2.y22 =, H"?, we get a formula
b2%(Z,) - dim F2Gey(H2 ) +(é_ ‘qu+g) LRI
We can restrict the Clemens-Schmid sequence to

- N
F~lGr_JH, — F2Gr,H? — F2Gr,H2  — FGr 2

lim 0 lim *
But
-1 2
F7'Gr_,H, = Ann(F?Gr H% = 0
and
1 2 _
F GrUHIim =0
so that
2 2 2 2 2,0, y[0]
F Gr2H1im > F*Gr,H® =~ H*- (X" .
Thus,

Po(Ep) = Zp Xy + (é— ‘D“Q+E) + %)

117
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. 1 B .
Since 5 ®--g+q >0, we get pg(It) > X pg(Xl) , and some

ALTERNATE CRITERIA FOR MONODROMY
(1) N-0 on H[ <=>h'(|l)=0

(2) N2 -0 on leim =5 h(|I') =0

(3) N=0 on H12_1m = p (X)) = Tp,Xy).

A formula for hl'l(it) can be derived in a similar manner, but it is
usually more efficient to simply compute both h2:9 %) and b (%)).
(b) The geometric genus

The analysis of the geometric genus above extends easily to higher
dimensions. Let #:X A be a semistable degeneration with fibre dimen-
sion n. As above, we have

FN' =~ gL O0gutlg... ot |
lim lim lim

The relevant part of the Clemens-Schmid sequence is

Floe  H_,—— F'GrH" — Fer - pn-lgr oY

—n—-2""n+2 n='n im n-2""1lim
while
n-1 n o _
F GrﬂﬂHlim =0
and
-1 . 2 n+2y _
F7'Gr , ,H,, = Ann(F~Gr, H"™) =0
50 that

n n n n,o, 0
F Grn];llim = F Gr H" = H (&:{ ]) .
. no _ .
Thus, dim Hlim =% pg(Xl), so that

(+4) Pg(Ep > TpXp -
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Notice that N = 0 implies equality in (+%). The converse is not true; how-

ever, if equality holds, then H™® - 41 . 0, which implies H® 1M .p
lim lim lim

and hence Gry = Gr, , = 0. Thus, we have the

GEOMETRIC GENUS CRITERION.
o)) Pg( X)>Z Pg(Xi)-
{2) If N =0, then equality holds in (1).
{3) If equality holds in (1), then N™! _ 0.
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