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The Heat Equation

Here is the initial value problem for the linear heat equation:{
∂tu = ∂2xu, x ∈ R, t > 0,

u(x , 0) = u0(x)

in one spatial dimension. It is an example of an evolution equation.
By a local solution, we mean a function u = u(x , t) which

1. satisfies the differential relation for (x , t) ∈ R× [0,T ];

2. recovers the initial data.

Physically, u(x , t) corresponds to the temperature at time t
measured at position x along a thin, perfectly insulated, infinite
length wire.



Local Well-Posedness of Evolution Equations

A central mathematical problem is to determine the existence of
solutions to evolution equations. The initial value problem{

∂tu = Au, x ∈ R, t > 0,

u(x , 0) = u0(x),

is said to be locally well-posed (LWP) in the function space X if
for every u0 ∈ X there exists a time T > 0 and a unique solution u
to the equation satisfying two conditions:

1. The solution persists in the space X , that is,

u ∈ C ([0,T ] : X ).

2. The solution depends continuously on the initial data u0.



The Lebesgue Space L2(R)

It is common to impose a finiteness condition on the initial data.
The function space

L2(R) =

{
f : R→ R

∣∣∣ ∫
R
|f (x)|2 dx <∞

}
captures this idea and has many nice mathematical properties.

1. It has an inner product

〈f , g〉 =

∫
R

f (x)g(x) dx .

2. The inner product defines a norm

‖f ‖2 =

(∫
R
|f (x)|2 dx

)1/2

= 〈f , f 〉1/2.



The Sobolev Spaces Hk(R)

Functions in L2(R) may be “rough”. When studying PDE, it is
natural to require functions to be differentiable. This motivates the
definition of the Sobolev space

Hk(R) =
{

f ∈ L2(R)
∣∣∣‖f ‖22 + ‖∂x f ‖22 + · · ·+ ‖∂kx f ‖22 <∞

}
for k ∈ Z+. The Sobolev norm is

‖f ‖Hk =
(
‖f ‖22 + ‖∂kx f ‖22

)1/2
.

Note that

Hk+1 ⊂ Hk ⊂ Hk−1 ⊂ · · · ⊂ H0 = L2.



The Sobolev Embedding

If f ∈ Hk+1(R), then ∂k+1
x f may be “rough” as it only lies in

L2(R). The Sobolev notion of derivative is weaker than the usual
limit definition.

However, ∂kx f must be continuous and bounded, with

|∂kx f (x)| ≤ c‖f ‖Hk+1 .

Abbreviating,
Hk+1(R) ⊂ C k

b (R).

In particular, if f ∈ H1(R), then f is continuous and bounded.



The Fourier Transform on R

Joseph Fourier employed this transform to study the heat equation.
It is still actively researched in conjunction with PDE.

The spectrum of a function f is given by

f̂ (ξ) =

∫
R

f (x)e−2πixξ dx .

Often, we can recover f from its spectrum f̂ via inversion

f (x) =

∫
R

f̂ (x)e2πixξ dξ.

We review essential properties of the Fourier transform.



Properties of Fourier Transform

1. The Fourier transform is a linear isometry on L2(R), that is,

̂(αf + βg)(ξ) = αf̂ (ξ) + βĝ(ξ), α, β ∈ R,

and
‖f ‖2 = ‖f̂ ‖2.

The above identity is the Plancherel (or Parseval) theorem.

2. Translating f by h units corresponds to multiplying its
spectrum by a function of modulus one.

̂f (x − h)(ξ) = e−2πihξ f̂ (ξ)



Properties of Fourier Transform

3. The derivative is a Fourier multiplier. Observe

∂x f (x) = ∂x

∫
R

f̂ (ξ)e−2πixξ dξ

=

∫
R

f̂ (ξ)∂xe−2πixξ dξ

=

∫
R

f̂ (ξ)(−2πiξ)e−2πixξ dξ.

4. Repeating this procedure, for k ∈ Z+

∂kx f (x) =

∫
R

f̂ (ξ)(−2πiξ)ke−2πixξ dξ.



Sobolev Spaces via the Fourier Transform

Recall that f ∈ Hk(R), k ∈ Z+, if

‖f ‖2Hk = ‖f ‖22 + ‖∂kx f ‖22 <∞.

Using the properties of the Fourier transform,

‖f ‖2Hk = ‖f̂ (ξ)‖22 + ‖(2πiξ)k f̂ (ξ)‖22

=

∫
R
|f̂ (ξ)|2 + |2πξ|2k |f̂ (ξ)|2 dξ

≈
∫
R

(1 + |ξ|2)k |f̂ (ξ)|2 dξ

= ‖(1 + |ξ|2)k/2f̂ (ξ)‖22.

This expression gives an alternate definition of the Sobolev norm.
Intuitively, a function is k-times differentiable if its spectrum has
enough decay to make these integrals finite.
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A Special Solution to the Heat Equation

The initial value problem{
∂tu = ∂2xu, x ∈ R, t > 0,

u(x , 0) = cos(λx)

with λ > 0 has solution

u(x , t) = e−λ
2t cos(λx).

The greater the frequency λ of the initial data, the greater the
damping as time evolves. The heat equation is dissipative!



Solution of Heat Equation via Fourier Transform

Suppose u0 ∈ L2(R). Beginning with the equation ∂tu = ∂2xu,
apply the Fourier transform in the x-variable. Then

∂t û(ξ, t) = ∂̂2xu(ξ, t)

= (2πiξ)2û(ξ, t)

= −4π2ξ2û(ξ, t).

For fixed ξ ∈ R, we have the following ODE in time
∂t û(t) = − 4π2ξ2︸ ︷︷ ︸

m

û(ξ, t), t > 0,

û(t = 0) = û0(ξ).

This ODE has the form y ′ = −my , which has solution

y(t) = c0e−mt .



Solution and LWP of Heat Equation

Solving the ODE yields

û(ξ, t) = û0(ξ)e−4π
2ξ2t

and so by inversion

u(x , t) =

∫
R

û0(ξ) e−4π
2ξ2t︸ ︷︷ ︸

Dissipation!

e2πixξ dξ.

This expression provides existence and uniqueness of solutions in
the function space X = L2(R) (or Hk(R), k ∈ Z+). Note that

‖u(t)‖2 = ‖û0(ξ)e−4π
2ξ2t‖2, t > 0,

so that the solution persists in L2 with norm decreasing in time.
Similarly, the solution depends continuously on the initial data.



Smoothing Effect for the Heat Equation

A solution to the heat equation with u0 ∈ L2(R) has an L2-norm
which decreases in time. Furthermore

u(·, t) ∈ Hk(R) for any k ∈ Z+, t > 0.

The solution is smooth for t > 0! Why is this?

‖∂kx u(·, t)‖2 = ‖(2πiξ)ke−4π
2ξ2t û0(ξ)‖2

≤ (2π)k‖|ξke−4π
2ξ2t |û0(ξ)‖2

≤ ck‖u0‖2.

An exponential function dominates any polynomial (if t > 0)!

To prove the smoothing effect we used the explicit solution
provided by the Fourier transform. But we can arrive at the same
conclusion using the PDE only.



Integration by Parts

Recall the integration by parts formula∫
R

u dv = uv
∣∣∣∞
−∞
−
∫
R

v du.

We can often assume u, v decay as |x | → ∞ so that∫
R

u dv = −
∫
R

v du.

Also note, from the product rule

1

2

d

dt
(f 2) = f

df

dt
.



Smoothing Effect for the Heat Equation (Redux)
Suppose u0 ∈ L2(R) and u = u(x , t) is a solution to{

∂tu = ∂2xu, x ∈ R, t > 0,

u(x , 0) = u0(x).

Multiplying the equation by u and integrating in the x-variable∫
R

u∂tu dx =

∫
R

u∂2xu dx

⇒ 1

2

∫
R
∂t(u2) dx = −

∫
R
∂xu∂xu dx

⇒ 1

2

d

dt

∫
R

u2(x , t) dx = −
∫
R

(∂xu)2(x , t) dx

In alternate notation

d

dt
‖u(t)‖22 = −2‖∂xu(t)‖22.



Smoothing Effect for the Heat Equation (Redux)

Integrating
d

dt
‖u(t)‖22 = −2‖∂xu(t)‖22

in the time interval [0,T ], by the fundamental theorem of calculus

‖u(T )‖22 − ‖u0‖22 = −2

∫ T

0
‖∂xu(t)‖22 dt.

By assumption, the left-hand side is finite, hence so is the
right-hand side. This allow us to find t∗ as small as desired so that

‖∂xu(t∗)‖22 <∞.

But now u(·, t∗) ∈ H1(R), and so applying the LWP theorem again
shows that the solution persists in H1(R) for all t∗ ≤ t ≤ T .



� An Iterative Argument

Suppose u0 ∈ L2(R) and u = u(x , t) is a solution to{
∂tu = ∂2xu, x ∈ R, t > 0,

u(x , 0) = u0(x).

1. We proved that u(·, t) ∈ H1(R) for any t > 0.

2. Differentiating the equation

∂t(∂xu) = ∂2x (∂xu)

shows ∂xu also solves the heat equation.

3. Which means we can apply the smoothing argument again!

4. Now u(·, t) ∈ H2(R) for any t > 0.

5. By induction, u(·, t) ∈ Hk(R) for any k ∈ Z+, t > 0.



Heat Equation Summary

1. The initial value problem{
∂tu = ∂2xu, x ∈ R, t > 0,

u(x , 0) = u0(x).

is well-posed in L2(R) or Hk(R).

2. The Fourier transform provides the solution

u(x , t) =

∫
R

û0(ξ)e−4π
2ξ2te2πixξ dξ.

3. Exponential decay of the Fourier multiplier shows:

3.1 the L2-norm decreases in time;
3.2 the solution belongs to Hk(R) for any k ∈ Z+, t > 0.

4. Using the “energy method” (a.k.a. integrating by parts) we
provided an alternate proof of 3.1 and 3.2.
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The Airy Equation and Special Solution

Here is the initial value problem for the Airy equation:{
∂tu = −∂3xu, x ∈ R, t > 0,

u(x , 0) = u0(x).

This evolution equation models waves in a narrow channel.

For example, taking initial data u0(x) = cos(λx), with λ > 0, the
above initial value problem has solution

u(x , t) = cos(λx + λ3t).

Thus the wave cos(λx) moves leftward with velocity ∼ λ2. As
velocity depends on frequency, the Airy equation is dispersive!



Solution of the Airy Equation via Fourier Transform

Suppose u0 ∈ L2(R). Beginning with the equation ∂tu = −∂3xu,
apply the Fourier transform in the x-variable. Then

∂t û(ξ, t) = −(2πiξ)3û(ξ, t) = i(2π)3ξ3û(ξ, t).

For fixed ξ ∈ R, this is an ODE in time with solution

û(ξ, t) = û0(ξ)e i(2π)
3ξ3t

and so by inversion

u(x , t) =

∫
R

û0(ξ) e i(2π)
3ξ3t︸ ︷︷ ︸

Dispersion!

e2πixξ dξ.



LWP of the Airy Equation

For u0 ∈ L2(R) or Hk(R), k ∈ Z+, the initial value problem for the
Airy equation has solution

u(x , t) =

∫
R

û0(ξ)e i(2π)
3ξ3te2πixξ dξ.

This formula provides local well-posedness in these spaces with

‖u(t)‖Hk = ‖(1 + ξ2)k/2e i(2π)
3ξ3t û0(ξ)‖2

= ‖(1 + ξ2)k/2û0(ξ)‖2
= ‖u0‖Hk .

That is, the solution persists in L2 or Hk with conserved norm.

Conversely, if u0 /∈ Hk , then u(t) /∈ Hk for any t ∈ R. There can
be no smoothing effect like that of the heat equation!



Kato’s Smoothing Argument

The persistence property for the Airy equation does not preclude
all smoothing effects.

Figure : A cutoff function χ(x) and its translates χ(x + νt), ν > 0.

Following the intuition that high frequency waves disperse leftward
more quickly than lower frequencies, Kato included a cutoff
function in the energy method. The modified argument only
“sees” the properties of the solution to the right.



An Example Problem

Consider the initial value problem{
∂tu = −∂3xu, x ∈ R, t > 0,

u(x , 0) = u0(x).

where

u0(x) =

{
1 −1 < x < 0

0 otherwise.

Then u0 ∈ L2(R), but it’s not continuous so that u0 /∈ H1(R).
However, u0 is very smooth on the interval [0,∞).

We will show that the solution inherits this smoothness.



Smoothing Effect for the Airy Equation
Let u = u(x , t) the solution to ∂tu = −∂3xu with initial data u0.
Multiplying the equation by χu and integrating in the x-variable∫

R
u∂tuχ dx = −

∫
R

u∂3xuχ dx

⇒ 1

2

∫
R
∂t(u2χ)− u2∂tχ dx = −

∫
R

u∂3xuχ dx

⇒ 1

2

d

dt

∫
R

u2χ dx − 1

2

∫
R

u2∂tχ dx = −
∫
R

u∂3xuχ dx

...

After integrating by parts, we find the solution satisfies

d

dt

∫
R

u2χ(x + νt) dx + 3

∫
R

(∂xu)2χ′(x + νt) dx

=

∫
R

u2
{
νχ′(x + νt) + χ′′(x + νt)

}
dx .



Smoothing Effect for the Airy Equation

Integrating in the time interval [0,T ], by the fundamental theorem
of calculus and properties of χ,∫

R
u2(x ,T )χ(x + νT ) dx + 3

∫ T

0

∫
R

(∂xu)2χ′(x + νt) dxdt

≤
∫
R

u2
0χ(x) dx + c

∫ T

0

∫
R

u2(x , t)χ′(x + νt) dxdt

≤ ‖u0‖22 + c

∫ T

0
‖u(t)‖22 dt

≤ (1 + cT )‖u0‖22.

Assuming u0 ∈ L2(R), all of these expressions are finite.



Smoothing Effect for the Airy Equation

Let u0 ∈ L2(R) and u = u(x , t) be the solution to{
∂tu = −∂3xu, x ∈ R, t > 0,

u(x , 0) = u0(x).

Then for any T ,R > 0∫ T

0

∫ R

−R
(∂xu)2(x , t) dxdt <∞.

We gain one derivative in a local sense.



� An Iterative Argument

Differentiating the equation, multiplying by ∂xuχ and integrating:∫
R

(∂xu)2(x ,T )χ(x + νT ) dx + 3

∫ T

0

∫
R

(∂2xu)2χ′(x + νt) dxdt

≤
∫
R

(∂xu0)2χ(x) dx + c

∫ T

0

∫ R

−R
(∂xu)2(x , t) dxdt.

The first term is finite by choice of u0, the second by previous case.

Even though u0 /∈ H1(R), we have proved that for x0 ∈ R, t > 0∫ ∞
x0

(∂xu)2(x , t) dx ≤
∫
R

(∂xu)2(x , t)χ(x + νt) dx <∞.

Hence the restriction of u(·, t) to the interval (x0,∞) lies in H1(R)
for t > 0. By induction, the restriction is smooth!



Summary

1. For u0 ∈ L2(R), the solution u of the heat equation{
∂tu = ∂2xu, x ∈ R, t > 0,

u(x , 0) = u0(x)

exhibited a strong smoothing effect. For any t > 0, the
solution u(·, t) lies in Hk(R) for any k ∈ Z+.

2. For u0 ∈ L2(R), the solution u of the Airy equation{
∂tu = −∂3xu, x ∈ R, t > 0,

u(x , 0) = u0(x).

inherits regularity of the initial data “from the right” only:

u0 ∈ Hk(0,∞) ⇒ u(·, t) ∈ Hk(x0,∞), t > 0, x0 ∈ R.



Research

Murray ([4]) analyzed the KdV equation

∂tu + ∂3xu + u∂xu = 0

with step data. Kato ([3]) proved that a solution to the KdV
equation has derivatives of all orders if ebmu0(x) lies in L2(R).

Isaza, Linares and Ponce ([1], [2]) proved versions of the theorem
found in this talk for the KdV and Benjamin-Ono equations.

In an upcoming paper, Prof. Segata (Tohuku University) and
myself extend these results to higher order dispersive equations like

∂tu − ∂5xu + u∂3xu = 0.
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