Review Sheet: Chapter Three

Jingrun Chen

Math 3C, Spring 2011

LINEAR ALGEBRA

- Matrix Terminology \& Corresponding Properties: Dimension (Order), Element (Entry), Row Vector, Column Vector, Square Matrix, Diagonal Element, Augmented Matrix, Reduced Row Echelon Form (RREF), Inverse Matrix
- Special Matrix \& Corresponding Properties: Zero Matrix, Diagonal Matrix, Identity Matrix
- Operation for Single Matrix \& Corresponding Properties: Scalar Multiplication, Determinant, Elementary Row (Column) Operations,
- Matrix Arithmetic (Between Matrices) \& Corresponding Properties: Addition, Subtraction, Multiplication, Division
- Be Able to Solve Systems of Linear (Algebraic) Equations by Gaussian Elimination for Different Cases: Unique Solution, Infinitely Many Solutions, No Solution; Understand Correspondence Between Pivot, Rank, Invertibility, Singularity \& Number of Solutions; Be Able to Solve Linear Systems by Nonhomogeneous Principle \& Cramer's Rule
- Vector Space (Ten Conditions), Subspace (Two Conditions) \& Their Characterization: Basis \& Dimension

PRACTICE PROBLEMS
1

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & -2 \\
0 & 1 & 1
\end{array}\right), \mathbf{C}=\left(\begin{array}{ccc}
3 & 1 & -1 \\
-1 & 1 & 3 \\
1 & -1 & 1
\end{array}\right)
$$

and $k=1 / 4$, calculate $\mathbf{B}=k \mathbf{C}, \mathbf{A}+\mathbf{C}, \mathbf{A B}, \mathbf{B A},|\mathbf{A}|,|\mathbf{A B}|,|\mathbf{B A}|$, \mathbf{A}^{-1}.

2 Solve the following linear systems by Gaussian elimination, nonhomogeneous principle, and Cramer's rule (if possible)

$$
\begin{array}{r}
x+z=2 \\
2 x-3 y+5 z=4 \\
3 x+2 y-z=4
\end{array}
$$

$$
\begin{aligned}
x+2 y+z & =2 \\
2 x-4 y-3 z & =0 \\
-x+6 y-4 z & =2 \\
x-y & =4
\end{aligned}
$$

$$
\begin{aligned}
x_{1}+2 x_{3}-4 x_{4} & =1 \\
x_{2}+x_{3}-3 x_{4} & =2
\end{aligned}
$$

3 Show that the set $C^{1}(\mathbb{R})=\{$ all continuously differentiable functions over $\mathbb{R}\}$ is a vector space. Show that the following sets:

$$
V=\left\{y(t) \mid y(t) \in C^{1}(\mathbb{R}), \text { and } y(1)=0\right\},
$$

and

$$
W=\left\{y(t) \mid y(t) \in C^{1}(\mathbb{R}), \text { and } y^{\prime}+t y=0\right\}
$$

are subspaces of $C^{1}(\mathbb{R})$.
4 Show that $\mathbf{S}=\{[1,0,0],[1,1,0],[1,1,1]\}$ forms a basis of \mathbb{R}^{3}.

