Review Sheet: Chapter One \& Two

Jingrun Chen

Math 3C, Spring 2011

DIFFERENTIAL EQUATIONS

- Modeling (Single Differential Equation): Malthus Model for Population Growth \& Saving (Growth Equation), Newton's Law of Cooling \& Radioactive Decay (Decay Equation), Saving \& Mixing (Nonhomogeneous Equation), Logistic Equation \& Threshold Equation (Nonlinear Autonomous Differential Equation)
- Modeling (System of Differential Equations): Predator-Prey Model \& Competition Model (Autonomous System)
- Characterize Differential Equations : Single vs. System, Linear vs. Nonlinear, Order, Homogeneous vs. Nonhomogeneous, Autonomous vs. Non-autonomous, Separable vs. Nonseparable
- Qualitatively Analysis (Single Differential Equation): Direction Fields, Stability of Equilibria, Bifurcation Diagram
- Qualitatively Analysis (System of Differential Equations): Phase Portraits, Stability of Equilibria (Not Covered in 3C)
- Quantitative Analysis (Single Differential Equation): Explicit Solution, e.g., Separation of Variables \& Integrating Factor Method (EulerLagrange Two-Stage Method); Numerical Solution, e.g., Euler Method \& Runge-Kutta Method. Techniques From 3A \& 3B Are Required, e.g., Differentiation \& Integration, Integration by Parts, Substitution, Partial Fractions Decomposition....
- Quantitative Analysis (System of Differential Equations): Explicit Solution (Not Covered in 3C) \& Numerical Solution (Not Covered in 3C)
- Existence \& Uniqueness (Single Differential Equation): Picard's Existence \& Uniqueness Theory
- Existence \& Uniqueness (System of Differential Equations) (Not Covered in 3C)

PRACTICE PROBLEMS
1 Solve the logistic population model

$$
\frac{d y}{d t}=k y(1-y)
$$

where $k>0$ is the growth rate constant. Draw the corresponding direction fields when $k=1$ and analyze the stability of equilibria. What happens in the long run $(t \rightarrow \infty)$?

2 Solve the following differential equations

$$
\begin{aligned}
& y^{\prime}=-\frac{1+y^{2}}{1+t^{2}}, y(0)=-1 \\
& 3 y^{2} y^{\prime}-2 y^{3}-t-1=0, y(0)=2 \\
& y^{\prime}=t^{2} \exp (y+2 t) \\
& y^{\prime}-y=\exp (3 t) \\
& y^{\prime}=1-y^{2} \\
& y^{\prime}=y(a-b \ln y)
\end{aligned}
$$

