Differential Equations and Linear Algebra
 Math 3C, Spring 2011
 Instructor: Jingrun Chen
 April 22, 2011

> Answer the following 3 questions. Calculators are not allowed. The use of books or notes of any kind is not allowed. Show all your work for full credit.

Name: \qquad

Perm Number: \qquad

Problem 1: \qquad out of 6 .

Problem 2: \qquad out of 10 .

Problem 3: \qquad out of 9 .

Total: \qquad out of 25 .

THESE SHEETS ARE TO BE HANDED IN WITH YOUR EXAM. THE GRADED EXAM CAN BE PICKED UP FROM MY OFFICE (DURING OFFICE HOURS).

1. (6 points) Answer the following questions indicating whether the statements are true or false (enclose the answer with a circle):
2. Every nonzero square matrix has an inverse (with respect to the True False product of matrices):
3. Given an $n \times n$ matrix, if $\mathbf{A x}=0$ only has the zero solution, then True False $\mathbf{A x}=\mathbf{b}$ has a unique solution for any $\mathbf{b} \in \mathbb{R}^{n}$:
4. The product of matrices is associative: True False
5. The product of matrices is commutative:
6. Given any two matrices, their product is well defined:

True False
6. Given any two $n \times n$ matrices, \mathbf{A} and $\mathbf{B},(\mathbf{A B})^{T}=\mathbf{A}^{T} \mathbf{B}^{T}$:

True False
True False
2. (10 points) Consider the following system of equations:

$$
\begin{array}{r}
x-y-z=1 \\
2 x+4 y+z=a \\
x-4 y+b z=3
\end{array}
$$

1. Find all the values of a and b for which the system has a unique solution.
2. Find all the values of a and b for which the system has infinitely many solutions.
3. Find all the values of a and b for which the system does not have any solution.
4. (9 points) Consider the following set:

$$
V=\left\{y \in C^{1}(\mathbb{R}) \mid y(0)=0\right\} .
$$

Show that V is a vector space over \mathbb{R}. (You can assume as known the fact that $C^{1}(\mathbb{R})$ is a vector space)

