Homework 1 - Math 104A, Fall 2011
 Due on Tuesday, October 4th, 2011

Section 1.1: 1.b, 3.a, 3.d, 4.d, 6 and 13.
Section 1.2: 1, 5, and 12.
Section 1.3: 1, 6, 7, 9, 11, and 16.
Additional problem: Assume that as h approaches zero,

$$
F(h)=L+C h^{\alpha}+O\left(h^{\alpha+1}\right)
$$

for some $\alpha>0$. Show that:

$$
\frac{2^{\alpha} F(h)-F(2 h)}{2^{\alpha}-1}=L+O\left(h^{\alpha+1}\right)
$$

This procedure is called Extrapolation to the limit. What do you think this procedure is good for? Now assume that, as h approaches zero,

$$
F(h)=L+C_{1} h^{2}+C_{2} h^{3}+O\left(h^{4}\right)
$$

Can you obtain an approximation to L of order $O\left(h^{4}\right)$? (Hint: Consider $F(h), F(2 h)$, and $F(4 h))$.

