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The test

sgn (f(a,)) - sgn (f(p.)) >0  insteadof  f(a,) - f(ps) >0

gives the same result but avoids the possibility of overflow or underflow in the multiplica-
tion of f{a,)and f(p,).

EXERCISE SET 21

1

10.

11.

Use the Bisection method to find py for f(x) = \/x —cosx on [0, 1].
Let f(x) = 3(x + 1)(x — 3)(x — 1). Use the Bisection method on the following intervals to find ps.
a. [-2,1.5] b. [-1.25,2.5]

Use the Bisection method to find solutions accurate to within 1072 for x* — 7x? -+ 14x — 6 == 0 on
each interval.

a {01 b. [1,32] e [32,4]

Use the Bisection method to find solutions accurate to within 1072 for x% — 22% —4x? Ldx +4 =90
on each interval.

a  [-2,-1] b. [0,2] e [2,3] d [-1,0]

Use the Bisection method to find solutions accurate to within 1073 for the following problems.
a x—27"=0 foal<x<l

b. & —x*4+3xr—2=0 fal<x<l

¢ 2xcos(2x)—~(x +1¥ =0 for-3<x<-2 and -1<x<0

d. xcosx—2x*4+3x-1=0 for02<x<03 and 12<x<13

Use the Bisection method to find solutions accurate to within 10~ for the following problems.
x—ef=0forl<x =<2

x+3cosx—ef =0 for0<x<1

x*—4x+4—-Inx=0 forl<x<2 and 2<x<4

x+1-2sin7x=0 for0<x<05 and 05<x<1

Sketch the graphs of y = x and y = 2sinx.

A

Use the Bisection method to find an approximation to within 107> to the first positive value of
x with x = 2sinx.

Sketch the graphs of y = x and y = tanx.

o

Use the Bisection method to find an approximation to within 1073 to the first positive value of
x withx = tanx. -

a.  Sketch the graphs of y = &° — 2 and y = cos(e® - 2).
Use the Bisection method to find an approximation to within 107 to a value in [0.5, 1.5] with
¢ —2 =cos(e" —2).
Let f(x) = (x +2)(x +1)%x{x — 1)*(x —2). To which zero of f does the Bisection method converge
when applied on the following intervals?
a. [—1.5,2.5] b, [-035,24] c. [-0573] d. [-3,-03]
Let f(x) = (x +2)(x -+ 1)x (x ~ 1)*(x —2). To which zero of f does the Bisection method converge
when applied on the following intervals?
a. [~-3,2.5] h. [-25,3] , c. [—1.7515] d. [-13,1.75]
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29,

Find an approximation to ~/3 correct to within 10~ using the Bisection Algorithm. [Hint: Consider
fx)=2*-3]

Find an approximation to ~/25 correct to within 10~* using the Bisection Algorithm,

Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approximation

with accuracy 10 to the solution of x*+x—4 = 0lying in the interval [1, 4]. Find an approximation
to the root with this degree of accuracy.

Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approximation
with accuracy 107 to the solution of x* —x—1 = 0lying in the interval [1, 2]. Find an approximation
to the root with this degree of accuracy.

Let f(x) = (x = 1", p = 1, and p, = 1 + 1/n. Show that | f(p,)| < 10~ whenever n > 1 but
that |7 — p.| < 107% requires that # > 1000.

Let {p,} be the sequence defined by p, = 3 ;. (1/k). Show that {p,} diverges even though
}imn-»oo(pn — pe-1) =10 ‘

The function defined by f(x)} = sinmx has zeros at every integer. Show that when —1 < g < 0 and
2 < b < 3, the Bisection method converges to

a. 0, fa+bh<2 b. 2, ifa+b>2 c 1, ifa+b=2

A trough of length L has a cross section in the shape of a semicircle with radius r (see the accom-
panying figure). When filled with water to within a distance 4 of the top, the volurne V of water
is

V=1L |:0.5R’P’2 — ¥ arcsin (E) — R - h2)1/2:| _
r

Suppose L = 10ft, r = 1 ft, and V = 12.4 ft’. Find the depth of water in the trough to within
0.01 ft.

A particle starts at rest on a smooth inclined plane whose angle 6 is changing at a constant rate

—&}—zm<0.

At the end of ¢ seconds, the position of the object is giver by

., ewt _e“-wf
() = -4 (——— ~sinmt) .

2a?

Suppose the particle has moved 1.7 ft in I s. Find, to within 1073, the rate @ at which & changes.
Assume that g == 32,17 ft/s2.
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The bound on the magnitnde of gj(x) is much smaller than the bound (found
in (¢)) on the magnitude of g;(x), which explains the more rapid convergence
using gs.

e. The sequence defined by
o) x4+ dxt 10
sy =x— —————
8 3x% 4 8x

converges much more rapidly than our other choices. In the next sections we will
see where this choice came from and why it is so effective. B

RCISE SET 22

1.

Use algebraic manipulation to show that each of the following functions has a fixed point at p pre-
cisely when f(p) = 0, where f(x) =x* +2x* —x - 3.

3 Ay 1/2
8 gi{x)=0+x-2uH" . b gr(x) = (ﬁz—x)
x+3 12 x4+ 22 43
. jmad d‘ = em—
¢ &) (x2—|—2) g4(x) pRCaT—

a.  Perform four iterations, if possible, on each of the functions g defined in Exercise 1. Let py = |
and ppyy = g(pa), forn=0,1,2,3.

b.  Which function do you think gives the best approximation to the solution?

The following four methods are proposed to compute 21"/, Rank them in order, based on their
apparent speed of convergence, assuming py = 1.

0p,., +21/p* r_ -2l
pn:——z]-_-Ll b. pn:pn—l_#‘“‘
n—1
e pu=pas— Py~ 21pay d p _( 21 )1/2
3 n—1 p,%_l _9 . n Pt

The following four methods are proposed to compute 7'/%, Rank them in order, based on their appar-
ent speed of convergence, assuming py = 1.

3
T—p_ =7
&  Dh = Pre (1 + _'E’E‘—l) b. Pn = P — & ;
Pr1 pn—l
5 5
o P 7 Po1 = 7
C. = Dy_1— d. = Pp-1—
Pr Pr-1 Spi_l Pn DPn-1 12

Use a fixed-point iteration method to determine a solution accurate to within 1072 for x* —3x? -3 = 0
onfl,2]. Use py = L.

Use a fixed-point iteration method to determine a solution accurate to within 107 forx* —x -1 =0
on[1,2]. Use py = 1. ,

Use Theorem 2.2 to show that g(x) = # + 0.5sin{x/2) has a unique fixed point on [0, 27]. Use
fixed-point iteration to find an approximation to the fixed point that is accurate to within 102, Use

Corollary 2.4 to estimate the number of iterations required to achieve 102 accuracy, and compare
this theoretical estimate to the number actually needed.

Use Theorem 2.2 to show that g(x) = 2~ has a unique fixed potnt on [% , 1]. Use fixed-point iteration
to find an approximation to the fixed point accurate to within 10, Use Corollary 2.4 to estimate the
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18.

19.

number of iterations required to achieve 10~* accuracy, and compare this theoretical estimate to the
number actually needed.

Use a fixed-point iteration method to find an approximation to /3 that is accuraie to within 107,
Compare your result and the number of iterations required with the answer obtaived in Exercise 10
of Section 2.1.

Use a fixed-point iteration method to find an approximation to /25 that is accurate to within 107,
Compare your result and the number of iterations required with the answer obtained in Bxercise 11
of Section 2.1.

For each of the following squations, determine an interval [, b} on which fixed-point iteration will
converge. (i) Estimate the number of iterations necessary to obtain approximations accurate to within
1073, and (i) perform the calculations.

2—e +x° 5 e\
a x:——g—— b. x=;+2 C. xz(?)
d x=57 e. x=07F f. x=05(inx +cosx)

For each of the following equations, use the given interval or determine an interval [, b} on which

fixed-point iteration will converge. (i) Estimate the number of iterations necessary to obtain approx-

imations accurate to within 107>, and (i) perform the calculations.

a 2+sinx—x=0 usel2, 3] b x¥*=2x—-5=0 usel2,3]

¢ - =0 d x-cosx=0

Find all the zeros of f(x) = x* + 10cosx by using fixed-poiut iteration for an appropriate iteration

function g. Find the zeros accurate to within 107,

Use a fixed-point iteration method to determine a solution accurate to within 10~* for x = tanx, for

x in[4,5]. '

Use a fixed-point iteration method to determine a solution accurate to within 10~ for 2 sinmx+x =0

on[1,2]. Use pg = 1.

Let A be a given positive constant and g(x) = 2 — Ax™.

a. Show that if fixed-point iteration converges to a nonzero limit, then the linnit is p=1/4,sothe
reciprocal of a number can be found using only multiplications and subtractions. '

b. Find an interval about 1/A for which fixed-point iteration converges, provided po is in that
interval.

Find a function g defined on [0, 1] that satisfies none of the hypotheses of Theorem 2.2 but still has

a unigue fixed point on [0, 1].

a.  Show that Theorem 2.2 is true if the inequality |g'(x)| < k is replaced by g'(x) <k, for all
x € (a, b). [Hint: Only uniqueness is in question. ]

b.  Show that Theorem 2.3 may not hold if inequality {g'(x}| < k is replaced by g'(x) < k. [Hint:
Show that g(x) = 1 —x?, for x in [0, 1], provides a counterexample. | '

a.  Use Theorem 2.3 to show that the sequence defined by

1

1
Xn = =Xpo1 , fornz=1,
2 Xn—1

converges to \/5 whenever xy > N2,

b. Use the fact that 0 < (xy — ~/2)* whenever xp # /2 to show that if 0 < xq < ~/2, then

x1>\/§.

¢ Use the results of parts (a) and (b) to show that the sequence in (a) converges to /2 whenever
x> 0 .
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24,

Tsaac Newton (16421727 was
Qﬁe of the most brilliant scientists
of all time, The late 17th century
was a vibrant period for science
émd mathematics and Newton’s
work touched nearly every aspect
of mathematics. His method for
Solving equations was introduced
0 find aroot of x* — 2x — 5 =0,
& problem we consider in
Exercise 5(a). Although he
demonstrated the methad

only for polynomials, it is

cléar that he realized its broader
applications,

2.3 Newton's Method 63

a.  Show thatif A is any positive number, then the sequence defined by

1
. _ ”ixﬂ—l * zxrw]

, forn=>1,

converges to +/A whenever xg > 0.
b.  What happens if xy < 07
Replace the assumption in Theorem 2.3 that “a positive number k < 1 exists with [g/(x)] < k”

. with “g satisfies a Lipschitz condition on the interval [a, b] with Lipschitz constant I < 1. (See

Exercise 25, Section 1.1,) Show that the conclusions of this theorem are still valid.

Suppose that g is continuously differentiable on some interval (c, d) that contains the fixed point p
of g. Show that if |g(p)| < 1, then there exists a § > 0 such thatif | p, — p| < &, then the fixed-point
iteration converges.

An object falling vertically through the air is subjected to viscous tesistance as well as to the force
of gravity. Assume that an object with mass m is dropped from a height s, and that the height of the
object after ¢ seconds is

$() = 50— ot + —(1 ehimy,

k

where g = 32.17 fi/s* and k represents the coefficient of air resistance in lb-s/ft. Suppose so = 300
ft, m = 0.25 1b, and k = 0.1 ib-s/ft. Find, to within 0.01 s, the time it takes this quarter-pounder to
hit the ground.

Let g € C'a, b] and p be in (e, b) with g(p) = p and |g'(p}| > 1. Show that there exists a § > 0
such that if 0 < |pg — p| < &, then |py — p| < |py — pl. Thus, no matter how close the initial
approximation py is to p, the next iterate p; is farther away, so the fixed-point iteration does not
converge if py £ p.

Newton's Method

Newton’s (or the Newton—Raphson) method is one of the most powerful and well-known
numerical methods for solving a root-finding problem. There are many ways of introducing
Newton’s method.

If we only want an algorithm, we can consider the technique graphically, as is often
done in calculus. Another possibility is to derive Newton’s method as a technique to ab-
tain faster convergence than offered by other types of functional iteration, as is done in
Section 2.4. A third means of introducing Newton’s method, discussed next, is based on
Taylor polynomials.

Suppose that f € C%{a, b]. Let p(} € [a, b] be an approximation to the solution p
of f{x) = 0 such that f'(py) # 0 and |p — py] is “small.” Consider the ﬁrst Taylor
polynomial for f{x) expanded about py, and evaluated at x = p,

(p— Po)

f(p) = f(po) + (p — po}f (po} + ——— f"(&(p)),

where £(p) lies between p and pg. Since f(p) =0, this equation gives

(p~ P0)2

0= f(po)-+(p~ po)f'(mo) + —=—=f"(&(p)).
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EXERCISE SET 24

Use Newton’s method to find solutions accurate to within 10~ for the following problems.

a. x?—2xe"4e¥=0, for0<x=<l .

b, cos(x ++2) +x(x/2 + VD=0, for-2<x<-1

e =322 +3x@ -8 =0, for0<x<1

d. & 4+3(n2)%> — (In8)e™ — (n2)y =0, for—1< x <0

Use Newton’s method to find solutions accurate to within 107> for the following problems.

a. 1 —dxcosx+2xi+cos2x =0, forl<x<l

b, x246x°+0r* — 20~ 6xi+1=0, for-3<x<-2

¢ sin3x+3egink — 3¢ sin2x —e"¥ =0, ford<x <4

do eF —27xf 2% —Ox%e” =0, ford<x <5

Repeat Exercise 1 using the modified Newton-Raphson method described in Eq. (2.11). Is there an
improvement in speed or accuracy over Exercise 17

Repeat Exercise 2 using the modified Newton—Raphson method described in Eq. (2.11). Is there an
improvement in speed or accuracy over Exercise 27

Use Newton’s method and the modified Newton—Raphson method described in Bq. (2.11) to find a
solution accurate to within 107 to the problem

¢ L 1.4416% - 2.079¢% —0.3330 =0, for —1<x<0.

This is the same problem as 1(d) with the coefficients replaced by their four-digit approximations.
Compare the sofutions to the results in 1(d} and 2(d).
Show that the following sequences converge linearly to p = 0. How large must # be before we have
Ipw — pl <5 x 1072
i 1
a p,=-—-, n=1 h. =7 n>1
a. Show that for any positive integer k, the sequence defined by p, = 1/ n* converges linearly to
p=0
b.  For each pair of integers k and m, determine a number N for which 1/N k<107,
a.  Show that the sequence p, = 107" converges quadratically to 0.

Show that the sequence p, = 107" does not converge to 0 quadratically, regardless of the size
of the exponent k > 1. ’

a. Construct a sequence that converges to 0 of order 3.
b.  Suppose ¢ > 1. Construct a sequence that converges to 0 of order a.

Suppose p is a zero of multiplicity m of £, where f® is continuous on an open interval containing -

p. Show that the following fixed-point method has g'(p) = 0:

mf (x)

fi(x)

Show that the Bisection Algorithm 2.1 gives a sequence with an error bound that converges linearly
to 0.

Suppose that f has m continuous derivatives. Modify the proof of Theorem 2.10 to show that f has
a zero of multiplicity m at p if and oaly if

gy =x —

0=f(p)=fp)=--=7"Dp). bdutfT(p)#£0.

B B L L a2 a2 e i s
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The iterative method to solve f(x) = 0, given by the fixed-point method g(x) = x, where

f(pn—l} _ fﬂ(prwl) |:f(Pnl)
Jpa1) 2f5Pact) L (Pat)

has ¢'(p) = g"(p) = 0. This will generally yield cubic (& = 3) convergence. Expand the analysis
of Example 1 to compare quadratic and cubic convergence,

It can be shown (see, for example, [DaB, pp. 228-229)) that if { Duloog are convergent Secant
method approximations to p, which is the solution to f(x) = 0, then a constant C exists such
that |p,y1 — p| 7 C|p, — pllps—t — p| for sufficiently large values of n. Assume {p,} converges to
p of order «, and show that @ = (1 + +/5)/2. (Note: This implies that the order of convergence of
the Secant method is approximately 1,62).

2
P = 8(Pact) = Puy — ] , forn:1,2,3,‘...,

Accelerating Convergence

Theorem 2.7 imples that it is rare to have the luxury of quadratic convergence. We now
consider a technique called Aitken’s A? method that can be used to accelerate the conver-
gence of a sequence that is linearly convergent, regardless of its origin or applicatioi.

Suppose {pn}°2 is a linearly convergent sequence with limit p. To motivate the con-
struction of a sequence {p,}°,, that converges more rapidly to p than does {p, Yoo letus
first assume that the signs of p, — p, pns1 — p, and p,42 — p agree and thatn is sufficiently
large that

Par1— P ~ Dnv2a— P
Pn—p Pnr1—p

Then
(Pat1 = PV 2 (Puy2 = D) (pn — D)
50
Pt = 2Pus1P + PP PuiaPa — (Pu + praa)p -+ P
and

(Pog2 +Pn — 2puy1)p & Prnt2Pn — p,2;+1-

Solving for p gives

pn+2pn - p,21+1
Pni2 — 2Py + Pn

o~

Adding and subtracting the terms pZ and 2p, p,41 in the numerator and grouping terms
appropriately gives

P PnPrs2 = 2PuPasi + p — P;%ﬂ + 2PnPrt1 — D
Pny2 — 2pn+1 +

_ P(Pri2 = 2P FP) — PR —20aPen T 1)) (P po)’
Prny2 — ZP;H—I + Pu " Pnt2 — an+l + P ‘




