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0.1

0.1
g, = Fx)dx = 0.099833416647 and ¢ = f P3(x)dx = 0.099833333333,
0 0

with ertor 0.83314 x 1077 = 8.3314 x 1073,

Parts (a) and (b) of the example show how two techniques can produce the same ap-
proximation but have differing accuracy assurances. Remember that determining approx-
imations is only part of our obj ective. An equally important part is to determine a bound
for the error of the approximation.
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1.

Show that the following equations have at least one solution in the given intervals.

a. xcosx —2x?+3x—-1=0, 70.2,0.3] and [1.2, 1.3]

b, (x—2Y-Inx =0, [1,2] and [e, 4]

e 2xcos(Zx) — (x — 2 =0, [ 3] and [3, 4]

4 x—(nx)* =0, [45]

Find intervals containing solutions to the following equations.

a. x—37*=0 b, 4x*—e€ =0

c. x?-22—-4x+2=0 4 x?+4.001x% 4 4.002x +1.101 = 0
Show that f/(x) is 0 at least once in the given intervals.

a f=1-e+—1 sin((w/2)x), [0, 1]

b, fx)=(x—-1jtanx +xsinzx, [0,1]

C. f(x):xsinarx_(x—%lnx, I1,2]

d. fx)=x-—2) smxIn(x +2), [-1,3]

Find max,<;<s | f (x)] for the following functions and intervals.

a.  f) =@ - +2x)/3 [0, 11

b. f(x)=@x— 3)/(x* —-2x), [0.5,1]

c.  f(x)=2xcos(2x) - (x - 2%, 12,4]

d  fEy=1+e D, 11,7

Use the Intermediate Value Theorem and Roile’s Theorem to show that the graph of f(x) = x4+

2x + k crosses the x-axis exactly once, regardless of the value of the constant XK.

Suppose f € Cla, b] and f’(x) exists on («, b). Show that if f'(x) # 0 for all x in (a, b), then there
can exist at most one number p in [a, b] with f(p) == 0.

Let f(x) = x°.

a. Tind the second Taylor polynomial P, (x) about xo = 0.

b. Find B,(0.5) and the actual error in using P,(0.5) to approximate f (0.5).

¢. Repeat part (a) using xp = 1.

d. Repeat part (b) using the polynomial from part (c).

Find the third Taylor polynomial P (x) for the function fx)= \/;—}«_1— about xg = 0. Approximate
J0.3, ~0.75, J1.25, and /1.5 using P3(x), and find the actual errors.

Find the second Taylor polynomial P, (x) for the function f (x) = €* cos x about xg = 0.

a. Use P,(0.5) to approximate £(0.5). Find an upper bound for error | £(0.5) — P,(0.5)] using the
error formula, and compare it to the actual error.
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Find a bound for the error | £ (x) ~ P,(x)| in using P;(x) to approximate f(x) on the interval
[0, 11.

Approximate fol f(x)dx using fol Py(x)dx.

Find an upper bound for the error in (c) using fo] |Ry(x) dx{, and compare the bound to the
actual error.

Repeat Exercise 9 using xq = 7 /6.
Find the third Taylor polynomial Ps(x) for the function f(x) = (x — 1) lnx about xg = 1.

a.

c.
d.

Use P3(0.5) to approximate f(0.5). Find an upper bound for error | £(0.5) — P5(0.5)] using the
error formula, and compare it to the actual error.

Find a bound for the error | £ (x) — Ps(x)| in using Ps(x) to approximate f(x) on the interval
[0.5, 1.5].

Approximate f05 F(x)dx using f05 Py(x) dx.

Find an upper bound for the error in (¢) using fol_‘ss |R3{x) dx|, and compare the bound to the
actual error.

Let f(x) = 2xcos(2x) — (x —2)? and x; = 0.

a,
b.

Find the third Taylor polynomial P;(x), and use it to approximate £(0.4).

Use the error formula in Taylor’s Theorem to find an upper bound for the error | £(0.4) —
P3(0.4)|. Compute the actual error.

Find the fourth Taylor polynomial P4 (x), and use it to approximate £(0.4).

Use the error formula in Taylor’s Theorem to find an upper bound for the error | £(0.4) —
P:(0.4)|. Compute the actual error.

Find the fourth Taylor polynomial Py(x) for the function f(x) = xe*" about xo = 0.

a.
b.

c.
d.

Find an upper bound for | f (x) — Py(x)], for 0 < x < 0.4,
Approximate f00‘4 f(x)dx using f00'4 P.(x)dx.

Find an upper bound for the error in (b) using fOM Pi(x) dx.
Approximate f'(0.2) using P;(0.2), and find the error.

Use the error term of a Taylor polynomial to estimate the error involved in using sinx A x to
approximate sin 1°.

Use a Taylor polynomial about 7 /4 to approximate cos 42° to an accuracy of 1076,
Let f(x) = ¢*/%sin(x /3). Use Maple to determine the following.

a.
b.

The third Maclaurin polynomial P5(x).
F%(x) and a bound for the error | f (x) — P5(x)| on [0, 1].

Let f(x) =In{x* 4+ 2). Use Maple to determine the following.

P Ro TR

The Taylor polynomial P3(x) for f expanded about xo = 1.

The maximum error | f(x) — Py(x)|, for 0 < x < 1.

The Maclaurin polynomial ;(x) for f. _

The maximum error | f (x) — P3(x)|, for 0 <x < 1.

Does P5(0) approximate f(0) better than P3(1) approximates f£(1)?

Let f(x) = (1 —x)"" and xy = 0. Find the nth Taylor polynomial 7, (x) for F(x) about xp. Find a -
value of n necessary for P,(x) to approximate f(x) to within 1076 on [0, 0.5].

Let f(x) = ¢* and xo = 0. Find the nth Taylor polynomial P, (x) for f(x) about x,. Find a value of
n necessary for P,(x) to approximate f(x) to within 107 on [0, 0.5].

Find the nth Maclaurin polynormal P {(x) for f(x) = arctan x.

The polynomial P(x) = 1 — —x is to be used to approximate f(x) = cosx in [—

2]. Find a

bound for the maximum error.
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The nth Taylor polynomial for a function f at xq is sometimes refarred to as the polynomial of degree
at most n that “best” approximates f near xq.

a. Explain why this description is accurate.

b. Find the quadratic polynomial that best approximates a function f near xq = 1 if the tangent
line at xo = 1 has equation y = 4x — 1, and if f"(1) =6.

A Maclaurin polynomial for ¢* is used to give the approximation 2.5 to e. The error bound in this

approximation is established to be E = é. Find a bound for the error in E.

The error function defined by

2 x
erf(x) = ﬁ f e di
. 0

gives the probability that any one of a series of tiials will lie within x units of the mean, assuming
that the trials have a normal distribution with mean 0 and standard deviation +/2/2. This integral
cannot be evaluated in terms of elementary functions, so an approximating technique must be used.

a. Integrate the Maclaurin series for e~*" to show that

(* 1)kx2k+l

9 o]

b. The error function can also be expressed in the form

el zkx2k+1

2 2
H(x) = ——e .
erf() = 7 ;1.3-5.-»(%4«1)

Verify that the two series agree for k = 1,2, 3, and 4. [Hint: Use the Maclaurin series for e ]
¢. Use the series in part (a) to approximate erf(1) to within 1077,
d.  Use the same number of terms as in part {c) to approximate erf{1) with the series in part (b).
e. Explain why difficulties occur using the series in part (b) to approximate erf(x).

A function f : [a, b] — R is said to satisfy a Lipschitz condition with Lipschitz constant L on [a, b]

if, for every x, y € [a, b1, we have | f(x) — fF(¥) = Lix — vi.

a.  Show that if f satisfies a Lipschitz condition with Lipschitz constant L on an interval [a, b],
then f € Cla, b].

b. Show that if # has a derivative that is bounded on [a, 2] by L, then f satisfies a Lipschitz
condition with Lipschitz constant L on [a, b].

c. Give an example of a function that is continuous on a closed interval but does not satisty a
Lipschitz condition on the interval.

Suppose f € Cla, b], that x; and x, are in [a, b], and that ¢; and ¢, are positive constants. Show that
a number £ exists between x; and x; with

c1 fx:) + e f(x)

61+C2

f&) =

Let f € Cla, b}, and let p be in the open interval (a, b).

a. Suppose f(p) # 0. Show thata § > 0 exists with f(x) # Oforall x in [p — &, p + 8], where
[p — 8, p + 8] a subset of [a, b).

b. Suppose f(p) = 0and k > 0 is given. Show that a § > 0 exists with | f(x}| = k for all x in
[p—38,p-+38], where [p—8,p+3d]a subset of {a, b].



CHAPTER 1 =

Mathematical Preliminaries and Error Analysis

Nesting has reduced the relative error for the chopping approximation to less than 10%
of that obtained initially. For the rounding approximation, the improvement has been even
more dramatic; the error in this case has been reduced by more than 95%. =

Polynomials should always be expressed in nested form before performing an evalu-
ation, because this form minimizes the number of arithmetic calculations. The decreased
error in Example 6 is due to the reduction in computations from four multiplications and
three additions to two multiplications and three additions. One way to reduce round-off
error is to reduce the number of error-producing computations.

XERCISE SET 1.2

1.

o o e

19.

Compute the absolute error and relative error in approximations of p by p*.

a. p=um,p*=22/7 b. p=mn, p*=3.1416
c. p=e, p-=2718 d. p=+2p"=1414
e. p=2e¢ p*=22000 £ p =107, p* == 1400
g p =8l p* = 39900 h. p=9, p* =187 (9/¢)’

Find the largest interval in which p* must lie to approximate p with relative error at most 10~* for
gach value of p.

a w b. e e 2 d 7

Suppose p* must approximate p with relative error at most 1073, Find the largest interval in which
p* must lie for each value of p.

a. 150 b. 9060 c¢. 1500 d. 90
Perform the following computations (i) exactly, (ii} using three-digit chopping arithmetic, and (ii1)
using three-digit rounding arithmetic. (iv) Compute the relative errors in parts (ii) and (iii).

4 41 4.1 1_ 3 3 1., 3 3
a. 3t3 b 3.3 ¢ (-d+x 4 GTH)-%
Use three-digit rounding arithmetic to perform the following calculations. Compute the absolute error
and relative error with the exact value determined to at least five digits.

a. 13340921 b. 133 —0.499 e. (121-0.327) — 119
136
4 7 ’ 3
d. (121 —119) - 0.327 e. m ‘ f. —10m +6e— 5
E
g (8- h T

17
Repeat Exercise 5 using four-digit rounding arithmetic.
Repeat Exercise 5 using three-digit chopping arithmetic.
Repeat Exercise 5 using four-digit chopping arithmetic.

The first three nonzero terms of the Maclaurin series for the arctangent function are x — (1/3)x> +
(1/5)x>. Compute the absolute error and relative error in the following approximations of 7 using
the polynomial in place of the arctangent:

a.  4farctan (1) + arctan (5)] b. 16arctan (1) — 4arctan (55)

The number e can be defined by e = Y - (1/n!). Compute the absolute error and relative error in
the following approximations of e: '
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i 1 N
a. — b —
= nl ~ n!
Let
xXcosx —sinx
fx)= ———.
. X —sginx
a. Find lim, ., f(x).
b.  Use four-digit rounding arithmetic to evaluate £(0.1).
¢.  Replace each trigonometric function with its third Maclaurin polynomial, and repeat part (b).
d. The actual value is f(0.1) = —1.99899998. Find the relative error for the values obtained in .
parts (b} and {(c).
Let
e — e *
flx) =
a. Find lim, .q(e® —e™™)/x.
b.  Use three-digit rounding arithmetic to evaluate f(0.1).
¢, Replace each exponential function with its third Maclaurin polynomial, and repeat part (b).
d. The actual value is £(0.1) = 2.003335000. Find the relative error for the values obtained in

parts (b) and (c).

Use four-digit rounding arithmetic and the formulas of Example 5 to find the most accurate approx-
imations to the roots of the following quadratic equations. Compute the absolute errors and relative
Errors.

a. %xzwl'i_—sx_}-é:O b. %xz-}-li—3x—%=0

¢.  1.002x% — 11.01x + 0.01265 =0 d.  1.002x* + 11.01x -+ 0.01265 = 0

Repeat Exercise 13 using four-digit chopping arithmetic.

Use the 64-bit long real format to find the decimal equivalent of the following floating-point machine
numbers,

a. 0 10000001010 1001001100000000000000000 000000000006000000000000000
h. 1 10000001010 1001001100000000000000000  000000000000000000000000000
c. 0 01111111111 0101001100000000000000000  000000O00O0G000000000000000
d. 0 0111 1 11111 0101001106000:000000000000  000000GO0000000000G00000001

Find the next largest and smallest machine numbers in decimal form for the numbers given in Fxer-
cise 15.

Suppose two points (xq, ¥o) and (x1, y;) are on a straight line with y; # y,. Two formulas are
available to find the x-intercept of the line: ‘

' —x X1 — X
PO %) Sl b R Jszo_(l O)yO’

Yr— Yo Y1 — Yo
a.  Show that both formulas are algebraically correct,

b.  Use the data (xg, yo) = (1.31,3.24) and (x;, y;) = (1.93, 4.76) and three-digit rounding arjth-
metic to compute the x-intercept both ways. Which method is better and why?
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The Taylor polynomial of degree n for f(x) = &* is ¥ ,(x*/i!). Use the Taylor polynomial of de-
gree nine and three-digit chopping arithmetic to find an approximation to e by each of the following
methods.

g ; 9 igi
s o= & (-D)'s
a etm) om=)
==} =0
1
b- 6—5 = '—5' ~ 91 o
€ Zi:(} i

¢ An approximate value of ¢~ correct to three digits is 6.74 x 10~%. Which formula, (a) or (b),
gives the most accuracy, and why?

The two-by-two linear system
ax +by=¢e, cx+dy=Ff

where ¢, b, ¢, d, e, f are given, can be solved for x and y as follows:

set m = E, provided a # 0,
a

d) = d — mb;
fi=f —me
:—fi'

Y d;’
e — by
X = ;
a

Solve the following linear systems using four-digit rounding arithmetic.
a. 1.130x — 6.990y = 14.20 ' b. 8.110x 4+ 12.20y = —0.1370
1.013x — 6.099y = 14.22 —~18.11x + 1122y = —0.1376
Repeat Exercise 19 using four-digit chopping arithmetic.

a. Show that the polynoimial nesting technique described in Example 6 can alse be applied to the
evaluation of

F(x) = 1.01e" — 4.62¢* — 3.11e™ + 12.2¢" — 1.99.

b. Use three-digit rounding arithmetic, the assumption that !5 = 4.62, and the fact that ™ =
(e®)" to evaluate f(1.53) as given in part (a).

¢. Redo the calculation in part (b) by first nesting the calculations.

d. Compare the approximations in parts (b) and (c) to the true three-digit result f(1.53) = ~7.61.

A rectangular parallelepiped has sides of length 3 cm, 4 cm, and 5 cm, measured to the nearest

centimeter. What are the best upper and lower bounds for the volume of this parallelepiped? What
are the best upper and lower bounds for the surface area?

Let P,(x) be the Maclaurin polynomial of degree n for the arctangent function. Use Maple carrying
75 decimal digits to find the value of # required to approximate 7 to within 10~%, using the following
formulas.

a. 4[R5} + B (3)] b 167, (5) — 45 (355)

Suppose that fI(y) is a k-digit rounding approximation to y. Show that

— fl
'wy f(y)‘go.smo-k“.
y
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[Hmt Ifdk—i—l < 5, then fl(y) == O.dldz e dk x 107, Hdk+1 = 5, then f[(y) = O.dldz N .dk x 107 -+
1007¢]

The binomial coefficient

my m!
(k) k! (m — k)

describes the number of ways of choosing a subset of k objects from a set of m elements.
a.  Suppose decimal machine numbers are of the form

+0.d1dodydy x 107, withl <d; <9, 0=<d;, <9,ifi =2,3,4 and |n| < 15.

‘What is the largest value of m for which the binomial coefficient ( ) can be computed for all &
by the definition without causing overflow?

b.  Show that {}) can also be computed by

m _(m) m—1 m—k+1
k) \k/\k-1 1 ‘
¢ What s the largest value of m for which the binomial coefficient (7) can be computed by the
formula in part (b) without causing overflow?

d. Use the equation in (b) and four-digit chopping arithmetic to compute the number of possible
5-card hands in a 52-card deck. Compute the actual and relative errors.

Let f € Cla, b} be a function whose derivative exists on (a, ). Suppose f is to be evaluated at x;
in (a, b), but instead of computing the actual value f (xg), the approximate value, £ (x), is the actual
value of f at xy + €, that is, f(xp) = Flxg + €.

a.  Use the Mean Value Theorem to estimate the absolute error | £ (xo) — f(x)] and the relative
ervor | £ (xo) — f(xo)l/| £ (%), assuming f(xp) # 0.

b. He=15x%x10"°and x, = 1, find bounds for the absolute and relative errors for
L fixy=¢" ii. f(x) =sinx

¢.  Repeat part (b) with € = (5 x 107%)xy and xy = 10.

The following Maple procedure chops a floating-point number x to ¢ digits.

chop:=proc(x,t);

if x=0 then {

else

e:=ceil(evalf (logl0(abs(x))));
x2:=evalf (trunc(x*10~ (t-e))
*10" (e~t));

fi

end;

Verify the procedure works for the following values.
a. x=124.031, t =5
¢ x=-—124031, t =35 x == 124036, t =5
e. x=0000653, t=2 x = 0.00656, ¢ =2

g x=-0.00653, r=2 h. x=-0.00656, t =2

The opening example to this chapter described a physical experiment involving the temperature of
a gas under pressure. In this application, we were given P = 1.00 atm, V = 0.100 m3, N = 0.00420

x=124.036, r=35

m B o
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mol, and R = 0.08206. Solving for T in the ideal gas law gives

rv (1.00)(0.100)
NR  (0.00420)(0.08206)

T= =290.15K = 17°C.

In the laboratory, it was found that T was 15°C under these conditions, and when the pressure was
doubled and the volume halved, T was 19°C. Assume that the data are rounded values accurate to the
places given, and show that both laboratory figures are within the bounds of accuracy for the ideal
gas law.

Throughout the text we will examine approximation procedures, called algorithms, involv-
ing sequences of calculations. An algorithm is a procedure that describes, in an unam-
biguous manner, a finite sequence of steps to be performed in a specified order. The object
of the algorithm is to implement a procedure to solve a problem or approximate a solution
to the problem.

We use a pseudocode to describe the algorithms. This pseudocode specifies the form
of the input to be supplied and the form of the desired output. Not all numerical procedures
give satisfactory output for arbitrarily chosen input. As a consequence, a stopping tech-
nique independent of the numerical technique is incorporated into each algorithm to avoid
infinite loops. :

Two punctuation symbols are used in the algorithms:

A period (.) indicates the termination of a step,
a semicolon (;) separates tasks within a step.

Indentation is used to indicate that groups of statements are to be treated as a single entity.
Looping techniques in the algorithms are either counter-controlled, such as

For i=1,2,...,n
Set x;=a;+i-h
or condition-controlled, such as _
While i/ < N do Steps 3-6.
To allow for conditional eﬁecution, we use the standard
If.. .then or If... then
else

constructions, _

The steps in the algorithms follow the rules of structured program construction. They
have been arranged so that there should be minimal difficulty translating pseudocode into
any programming language suitable for scientific applications.

The algorithms are liberally laced with comments. These are written in italics and
contained within parentheses to distinguish them from the algorithmic statements.
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We also use big oh notation to describe the rate at which functions converge.

Definition 1.19  Suppose that limy_,o G(h) = 0 and limy..o F (h) = L. If a positive constant K exists with
|\F(h) — L\ < KIG(h)|, for sufficiently small &,
then we write F(h) = L + O(G(h)). ]

The functions we use for comparison generally have the form G(h) = h¥, where
p > 0. We are interested in the largest value of p for which F(h) = L + O(h?).

Example 5 In Example 3(b) of Section 1.1 we found that the third Taylor polynomial gives
cosh =1—1n* + Lh*cosE(h),

for some number & (h) between zero and h. Consequently,

cosh + 1h? = 1+ Lh* cosE(h).

This implies that

cosh+ ih* =1+ O(h%),
since j(cosh + 1hz) -1 = cosg (W|h* < 1 h4 The implication is that as & > 0,
cosh + 1h2 converges to its lnmt 1, about as fast as h* converges 0 0. B

'XERCISE SET 1.3

1. a Use three—d1g1t choppmg anthmetlc to compute the sum Zlol(l /%) first by : + 4+ - + 100
and then by - T + -+ 1. Which method is more accurate, and why?

b, Write an algonthm to sum the ﬁmte series Zi:l x; in reverse order.

2. The number e is defined by e = 3 oo (1/n!). Use four-digit chopping arithmetic to compute the
following approximations to e, and determine the absolute and relative errors.

5 1 5
a. e = ;;T Z(S»_J)’

10
C.'B%Za NZ(]_O—-J)‘

3.  The Maclaurin series for the arctangent function converges for —1 < x < 1 and is given by

- . i+1 x

arctanx = nllnolo P.(x) = 11m Z( 1) 1

a. Use the fact that tan /4 = 1 to determine the number of r terms of the series that need to be
summed to ensure that |42,(1) — 7| < 107>,

b. The C++ programming language requires the value of 7 to be within 10~'°. How many terms
' of the series would we need to sum to obtain this degree of accuracy?
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Exercise 3 details a rather inefficient means of obtaining an approximatmn io . The method can
be improved substantially by observing that 7/4 = arctan + arctan and evaluating the series
for the arctangent at 7 and at . Determine the number of ferms that must be summed to ensure an
approximation to 0 within 10 -3,

Another formula for computing 7 can be deduced from the identity 7 /4 = 4 arctan : — arctan 53—53.

Determine the number of terms that must be summed to ensure an approximation to s to within 107,

Find the rates of convergence of the following sequences as n —> oo.

1 1
a. lim sin— =0 b. hmsm—:O
n-»oo n R—00 n
£\2
¢. lim (Sin m) =0 d. lim[ln{n+ 1) —In(n)}=0
A= 00 n A 00
Find the rates of convergence of the following functions as # — 0.
ink 1 —
a lim = o b lim P g
h—0 h h—0 h
inh —hkcosh 1—é*
¢ lim o TMESR g d. lim— % =1
h-+0 h h—~0  h

a. How many multiplications and additions are required to determine a sum of the form

ZZab ?

i=l j=

b. * Modify the sum in part (a) to an equivalent form that reduces the number of computations.

Let P(x) = ayx® + a,_1x"' + - + ayx + ao be a polynomial, and Jet xy be given. Construct an
algorithm to evaluate P (x;) using nested multiplication.

Example 3 of Section 1.2 gives alternative formulas for the roots x; andrxz of ax® + bx + ¢ = 0.
Construct an algorithm with input a, b, ¢ and output x;, x, that computes the roots x; and x, (which
may be equal or be complex comnjugates) using the best formula for each root.

Construct an algorithm that has as input an integer n > 1, numbers xg, x;, . .. , x,, and a number x
and that produces as output the product (x — xg)(x — x;) -+ - (x — x,,).
Assume that .
1—2x N 2x —4x° n 4x* — 8x7 o I+2x
1—x-+x*  1—x24x% 1-—x*4 28 Tl x +x?

for x < 1, and let x = 0.25. Write and execute an algorithm that determines the number of terms
needed on the left side of the equatmn 8o that the left side differs from the right side by less than
1075,

a. Supposethat) < g < pandthata, =a + O (rfp). Show that Gp =+ O (n—g).

b. Make a table listing 1/n, 1/n?, 1/n°, and 1/n* for n = 5, 10, 100, and 1000, and discuss the
varying rates of convergence of these sequences as n becomes large.

a.  Supposethat 0 < g < p and that F(h) == L + O (k?). Show that F(k) = L + O (h?).

b.  Make a table listing s, A%, h*, and h* for £ = 0.5, 0.1, 0.01, and 0.001, and discuss the varying
rates of convergence of these powers of 4 as & approaches zero.

Suppose that as x approaches zero,

Fix)=L +0x% and Fy(x)=L,+ 0.
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Let ¢; and ¢, be nonzero constants, and define
F(x)=c Fi(x) +aFx) and  G(x) = Fi(cx) + Falcx).

Show that if ¥ = minimum {c, 8}, then as x approaches zero,
a. Fx)=cli+ol;+ 0x)
b. Gx)=L{+ L+ Ox").

16. The sequence {F,} described by Fo = 1, F1 = 1, and F,p, = F, + F,1,if n = 0, is called
the Fibonacci sequence. Its terms occur naturally in many botanical species, particularly those with
petals or scales arranged in the form of a logarithmic spiral. Consider the sequence {x,}, where
x, = F,.:/F,. Assuming that lim, , . X, = x exists, show that x = (14 ~/5)/2. This number is
called the goiden ratio.

17. The Fibonacci sequence also satisfies the equation

.1 [+ (1=EY
o[22 ())

Write a Maple procedure to calculate Fg.

Use Maple with the default value of Digits followed by evalf to calculate Fioo.

Why is the result from part (a) more accurate than the result from part (b)?

Why is the result from part (b} obtained more rapidly than the result from part (a)?
‘What results when you use the command simplify instead of evalf to compute Fioo?

A

18. The harmonic series 1 -+ % + % + % + - - - diverges, but the sequence y, = 1 + :1—2 + .+ % —Inn
converges, since {1, } is a bounded, nonincreasing sequence. The limit y = 0.5772156649 ... of the
sequence {y,} is called Euler’s constant.

a.  Use the default value of Digits in Maple to determine the value of n for y, to be within 1072
of y. ‘

b.  Use the default value of Digits in Maple to determine the value of n for ¥, to be within 10~
of y.

¢.  What happens if you use the default value of Digits in Maple to determine the value of n for
¥, t0 be within 107 of y?

oftware

Numerical S

Computer software packages for approximating the numerical solutions to problems are
available in many forms, With this book, we have provided programs written in C, FOR-
TRAN, Maple, Mathematica, MATLAB, Pascal, and Java that can be used to solve the
problems given in the examples and exercises. These programs will give satisfactory re-
sults for most problems that you may need to solve, but they are what we call special-
purpose programs. We use this term to distinguish these programs from those available
in the standard mathematical subroutine libraries. The programs in these packages will be
called general purpose.

The programs in general-purpose software packages differ in their intent from the
algorithms and programs -provided with this book. General-purpose software packages
consider ways to reduce errors due to machine rounding, underflow, and overflow. They
also describe the range of input that will lead to results of a certain specified accuracy.




