Linear Functions

Brie Finegold

August 28, 2007

Let's think about composing linear functions. Suppose n, m are positive integers. A function $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear means that for each pair of vectors, $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ in $\mathbb{R}^{n}, L(x+y)=L(x)+L(y)$.

The goal is to find an efficient means of representing and composing linear functions.

1. Give an example of a linear function with:
(a) domain \mathbb{R}^{2} and range \mathbb{R}^{2},
(b) domain \mathbb{R}^{2} and range \mathbb{R}^{3}
(c) domain \mathbb{R}^{3} and range \mathbb{R}^{3}
(d) domain \mathbb{R}^{3} and range \mathbb{R}^{2}
(e) domain \mathbb{R}^{1} and range \mathbb{R}^{2}
(f) domain \mathbb{R}^{3} and range \mathbb{R}^{1}

Look for patterns amongst the examples of each type of function found by members of your group. What is the general form taken by a linear function?
2. Can you compose any two of the six functions listed above? Explain.
3. Compose several pairs of functions from your list, and discuss patterns you see.
4. I am thinking of a linear function, L, with domain and range \mathbb{R}^{2} with the property that $L(1,0)=(2,1)$ and $L(0,1)=(3,2)$. What is $L\left(x_{1}, x_{2}\right)$? Justify your answer.
5. Use the methods established in class to quickly compose $g\left(x_{1}, x_{2}\right)=$ $\left(x_{1}, x_{2}, x_{2}+x_{2}\right)$ and $f\left(y_{1}, y_{2}, y_{3}\right)=y_{1}+y_{2}+2 y_{3}$.
6. Write a paragraph explaining the relationship between matrices and linear functions to a college freshman who hasn't taken 3C.

