Linear Functions

Brie Finegold

August 28, 2007

Let's think about composing linear functions. Suppose n, m are positive integers. A function $L : \mathbb{R}^n \to \mathbb{R}^m$ is **linear** means that for each pair of vectors, $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ in \mathbb{R}^n , L(x + y) = L(x) + L(y).

The goal is to find an efficient means of representing and composing linear functions.

- 1. Give an example of a linear function with:
 - (a) domain \mathbb{R}^2 and range \mathbb{R}^2 ,
 - (b) domain \mathbb{R}^2 and range \mathbb{R}^3
 - (c) domain \mathbb{R}^3 and range \mathbb{R}^3
 - (d) domain \mathbb{R}^3 and range \mathbb{R}^2
 - (e) domain \mathbb{R}^1 and range \mathbb{R}^2
 - (f) domain \mathbb{R}^3 and range \mathbb{R}^1

Look for patterns amongst the examples of each type of function found by members of your group. What is the general form taken by a linear function?

- 2. Can you compose any two of the six functions listed above? Explain.
- 3. Compose several pairs of functions from your list, and discuss patterns you see.
- 4. I am thinking of a linear function, L, with domain and range \mathbb{R}^2 with the property that L(1,0) = (2,1) and L(0,1) = (3,2). What is $L(x_1,x_2)$? Justify your answer.
- 5. Use the methods established in class to quickly compose $g(x_1, x_2) = (x_1, x_2, x_2 + x_2)$ and $f(y_1, y_2, y_3) = y_1 + y_2 + 2y_3$.
- 6. Write a paragraph explaining the relationship between matrices and linear functions to a college freshman who hasn't taken 3C.