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My differential equation is p′(x) = sin(kp(x)). I chose the constant k = 1.
Another way of writing this D.E. is dy

dx = sin(y), and that is how I entered it
into the slope field applet.

Long term behavior of my D.E. can be described by answering the ques-
tions at the top of page 23:

1. There appear to be many constant solutions. The first one I noticed was
p(x) = 0. I checked to see that this was a solution by seeing if the left
hand side and right hand side of the DE matched. To find the others, we
assume that p′(x) = C is a solution to the D.E. Then p′(x) = 0 = sin(C).
This means C is a multiple of π. So the constant solutions for my DE are
p(x) = nπ where n is any integer.

2. The DE is defined everywhere since the sine function is defined everywhere.

3. The only straight line solutions are the constant ones. We can see this
because a straight line solution would be in the form p(x) = mx + b. So
if there were such a solution then p′(x) = m = sin(mx + b) for all x and
that is impossible unless m = 0.

4. The solution is concave whenever p′′(x) < 0 and convex whenever p′′(x) >
0 so first we must calculate p′′(x) by taking derivatives of both sides of
the DE.

p′′(x) = cos(p(x))p′(x) = cos(p(x)) sin(p(x))

The concavity switches when p′′(x) = 0. In other words, the concavity
switches whenever cos(p(x)) = 0 or sin(p(x)) = 0. Thus, the concavity
switches back and forth as we cross the horizontal lines p(x) = nπ2 where
n is an integer.

5. As x approaches∞, p(x) approaches a constant solution y = 2nπ for some
integer n. These constant solutions(the even multiples of π) are stable for
this reason.

6. As x approaches −∞, p(x) approaches a constant solution y = (2n+ 1)π
for some integer n. These constant solutions (the odd multiples of π) are
unstable for this reason.
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7. The solutions are periodic in the sense that they repeat over and over
across the plane. There are also asymptotes at the constant solutions.

Euler’s method produced the picture attached.

To check the first two iterations by hand, we use the fact that

p(x+ h) ≈ p(x) + hp′(x)

Since p′(x) = sin(p(x)) we rewrite the above as

p(x+ h) ≈ p(x) + hsin(p(x))h

Plugging in initial condition p(0) = 0 and h = .1, we get

p(0 + .1) ≈ p(0) + .1sin(p(0)) = 0

Similarly, we get p(.2) = 0. This corresponds to the constant solution y = 0.

For the initial condition p(0) = π/2, we get

p(.1) ≈ π/2 + .1 sin(π/2) = π/2 + .1 ≈ 1.67

p(.2) ≈ p(.1) + .1 sin(p(.1)) ≈ .1 + π/2 + .1 sin(.1 + π/2) ≈ 1.77

We can double check this with the applet and the solution curve shown passing
through (0, π/2).

As I changed the constant, the constant solutions changed. For instance,
picking k large packed the constant solutions closer together and picking k small
spread the constant solutions out. Changing the sign of k switched the stable
and unstable solutions.

As I decreased the step size for Euler’s Method, the picture became
better since, there were more points to connect. As I increased the step size
the approximation to the solution looked more jagged but showed the general
behavior of the solution. An example of a differential equation that ”break”
the applet is y′ = y2. It produces odd looking solutions that seems to go off to
infinity.

The reason y′ = y2 isn’t well-approximated by Euler’s Method is
that the slopes become very steep very quickly as y gets larger, causing the
method to grossly overshoot higher points. The RKF method worked best since
it simply did not display solutions for large y-values.
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