Parallelograms and Determinants of 2x2 matrices

Brie Finegold

September 3, 2007

We can think of a parallelogram as being defined by two vectors.

1. For example: Draw and find the area of the parallelogram spanned by the vectors $(5,7)$ and $(2,3)$
2. More examples and searching for patterns: Draw and find the areas of the parallelograms spanned by:
$(0,2)$ and $(1,0)$
$(1,2)$ and $(1,0)$
$(1,2)$ and $(2,2)$
$(3,6)$ and $(6,6)$
Write down any patterns you notice.
3. Discuss with everyone your strategies for finding areas of parallelograms.
4. General case: Find the area of a parallelogram spanned by (a, b) and (c, d).
5. What does this have to do with the determinant of a matrix?
6. What "operations" can we do to a parallelogram that preserve its area (to a matrix to preserve its determinant) ?
7. What "operations" change the area and how? What happens if we use negative numbers (i.e. draw our parallelogram in a different quadrant)?
8. When the determinant of a matrix is zero, what does the corresponding parallelogram look like? Are rows of the matrix linearly dependent or independent?
9. Draw a shape analogous to a parallelogram in three dimensions. This is called a parallelepiped. How do you find the volume of a parallelepiped?
10. Find the volume of the parallelepiped spanned by $(1,3,0),(2,8,0),(1,0,-1)$ using volume-preserving operations analogous to those you discovered for 2X2's. Are the vectors linearly independent?
